专利名称:具有高吸收系数的二维材料异质结结构及其建模分析方法
专利类型:发明专利
专利申请号:CN202111619662.3
专利申请(专利权)人:西南技术物理研究所
权利人地址:四川省成都市武侯区人民南路四段七号
专利发明(设计)人:蒋若梅,黄帅,谭杨,谢修敏,徐强,张伟,袁菲,李潇,宋海智
专利摘要:本发明公开了一种具有高吸收系数的二维材料异质结结构,其包括4层,自上而下依次为:单层二维材料I、单层二维材料II、单层二维材料I、单层二维材料II;二维材料I为硒化铂PtSe2,二维材料II为二硫化钼MoS2。本发明还提供一种二维材料异质结结构建模分析方法。本发明通过在PtSe2层间增加MoS2层实现对二维材料PtSe2的能带结构的调控,改善和提高了光电性能,步骤简单、易于操作,能够提高设计效率,在材料及性质研究方面有着明显的优势和应用前景。
主权利要求:
1.一种具有高吸收系数的二维材料异质结结构的建模分析方法,其特征在于,所述二维材料异质结结构包括4层,自上而下依次为:单层二维材料I、单层二维材料II、单层二维材料I、单层二维材料II;二维材料I为硒化铂PtSe2,二维材料II为二硫化钼MoS2;所述二维材料异质结为六方晶系;所述二维材料异质结的晶格常数为 γ=120°;所述二维材料异质结禁带宽度为0.1670eV;
所述建模分析方法包括以下步骤:
步骤1,使用MaterialsProject材料库构建MoS2体材料模型和PtSe2体材料模型;
步骤2,将MoS2体材料模型切晶面得到单层MoS2模型,将PtSe2体材料模型切晶面得到单层PtSe2模型;
步骤3,将步骤2得到的单层MoS2模型和单层PtSe2模型垂直堆叠2周期并添加真空层构成MoS2/PtSe2异质结模型;
步骤4,对步骤3构建的MoS2/PtSe2异质结模型进行结构优化,得到的能量最低的异质结结构;
步骤5,选择步骤4得到的异质结结构作为最稳定结构,进行自洽计算和非自洽计算;
步骤6,处理步骤4的非自洽计算结果,计算二维材料异质结的能带结构、态密度、电子能量损失谱、介电常数、吸收系数,并对所述二维材料异质结的性能进行分析;
步骤1中,MoS2体材料模型的空间群为P63/MMC[194],晶格常数为γ=120°;PtSe2体材料模型的空间群为P3M1[164],晶格常数为 γ=120°;
步骤4中,对所述MoS2/PtSe2异质结进行结构优化时,截断能选取为400‑600eV,k点为6*
6*1,电子收敛标准设置为1e‑5数量级,离子收敛标准设置为0.05;
步骤4中,结构优化后的MoS2/PtSe2异质结的晶格常数为γ=120°;
步骤5中,自洽计算时,截断能选取为500eV,k点为8*8*1,离子位置优化最大步数设置为0;
步骤6中,计算所述MoS2/PtSe2异质结的能带结构时,截断能选取为500eV,k路径设定为由G(0,0,0),K(0,1/2,0),M(‑1/3,2/3,0)三个高对称点围成的三角形闭合路径,电子收敛标准设置为1e‑5数量级,离子收敛标准设置为0.05;计算所述MoS2/PtSe2异质结的态密度时,k点为13*13*1,态密度数据点个数选取为2000,截断能不变;计算所述MoS2/PtSe2异质结的光学性质时,k点为15*15*1,总能带数量设定为80,截断能不变。 说明书 : 具有高吸收系数的二维材料异质结结构及其建模分析方法技术领域[0001] 本发明属于光电材料技术领域,涉及一种具有高吸收系数的二维材料异质结结构及其建模分析方法。背景技术[0002] 光电探测器能够将光信号转换为电信号,在红外成像和光通信等领域都有着极广泛的应用。由于与成熟的CMOS制造工艺兼容,硅基光电探测器目前使用较为广泛。但块体硅由于其间接带隙特点,不能对光进行有效的吸收利用;而其1.1eV的带隙宽度,限制了其在中远红外和太赫兹范围的应用。随着石墨烯材料的出现,二维材料的研究成为光电探测领域的重要课题。二维材料因其尺寸效应,具有良好的光学、电学及催化特性。纳米级别的材料厚度可以有效控制器件的大小;本征薄膜表面光滑且没有悬挂键,能依附于多种衬底之上。部分二维材料的带隙较宽,但可以通过掺杂等方法调节其带隙大小。与传统半导体相比,二维材料的原子层厚度保证了它的透明性和柔软性,并且表面没有悬挂键,异质结界面处不存在晶格匹配及热失配等问题,制备方法简单,在可穿戴电子等新领域有着极大的应用前景。因此,二维材料有希望成为代替硅等传统材料在光电领域地位的新材料。在二维材料的研究和探索过程中,人们发现了使二维材料更有效发挥优势的良好形式,即由两种及以上的二维材料堆叠而成的范德瓦尔斯异质结结构。人们相继研究了石墨烯/过渡金属硫族化合物(Transition‑metaldichalcogenide,TMD)和过渡金属硫族化合物/过渡金属硫族化合物异质结,如Graphene/MoS2、WSe2/MoS2等,发现这些结构在光电探测领域有较好的应用前景。在二维材料异质结光电探测器中,除了单一材料本身具备的性质外,二维材料异质结界面处的能带结构往往可以影响光生载流子的形成、漂移和复合等相关的过程,并且界面间电荷转移往往发生在50fs到亚皮秒范围内,进一步影响二维材料异质结器件的电学和光学性能。尽管目前在实验上对二维材料异质结光电性质的研究已经取得了一些进展和成就,仍然存在一些待解决的问题。硒化铂作为一种新型过渡金属硫化物,单层具有较大的带隙宽度(1.39eV),两层PtSe2带隙宽度约为0.6eV,而再增加其厚度,带隙减小到0,由间接带隙半导体逐渐转变为半金属,且易于制备,在红外应用中极具潜力。PtSe2的光电性能可由能带结构决定,但是仅靠厚度的调节无法将PtSe2的带隙宽度调节到更接近于零但又不等于零的程度。此外二维材料由于其原子层的厚度,对光能量的利用率往往不能满足需要,因此,二维材料异质结在光电探测器应用上需要较大地提高光吸收率。为此,本发明提出了一种新的材料结构,并发展了其建模分析方法,为解决二维光电材料的光吸收增强问题提供了可行的技术方案。发明内容[0003] (一)发明目的[0004] 针对上述现有技术存在的不足之处,并且为了突破传统半导体材料的应用限制,本发明提供一种具有高吸收系数的新型二维材料异质结结构,将不同的二维材料通过范德瓦尔斯力结合在一起,构成二维材料异质结,该异质结结构具有接近于零但又不为零的带隙宽度,且在可见光波段具有较高的吸收系数,且制备方法简单,可用于新型光电探测器。本发明还提供一种二维材料异质结结构的仿真分析方法,可计算二维材料异质结的电学性质和光学性质。[0005] (二)技术方案[0006] 为了解决上述技术问题,本发明提供一种具有高吸收系数的二维材料异质结结构,其包括4层,自上而下依次为:单层二维材料I、单层二维材料II、单层二维材料I、单层二维材料II;二维材料I为硒化铂PtSe2,二维材料II为二硫化钼MoS2。[0007] 本发明还提供一种具有高吸收系数的二维材料异质结结构的建模分析方法,其包括以下步骤:[0008] 步骤1,使用MaterialsProject材料库构建MoS2体材料模型和PtSe2体材料模型;[0009] 步骤2,将MoS2体材料模型切晶面得到单层MoS2模型,将PtSe2体材料模型切晶面得到单层PtSe2模型;[0010] 步骤3,将步骤2得到的单层MoS2模型和单层PtSe2模型垂直堆叠2周期并添加真空层 构成MoS2/PtSe2异质结模型;[0011] 步骤4,对步骤3构建的MoS2/PtSe2异质结模型进行结构优化,得到的能量最低的异质结结构;[0012] 步骤5,选择步骤4得到的异质结结构作为最稳定结构,进行自洽计算和非自洽计算;[0013] 步骤6,处理步骤4的非自洽计算结果,计算二维材料异质结的能带结构、态密度、电子能量损失谱、介电常数、吸收系数,并对所述二维材料异质结的性能进行分析。[0014] (三)有益效果[0015] 上述技术方案所提供的二维材料异质结结构,该异质结结构由二维材料MoS2和二维材料PtSe2交替堆叠而成,该结构的禁带宽度较小(0.1670eV),除了具备单一材料本身的性质外,还具有原子级别的突变平面、没有原子间的相互扩散、各层材料成分易控且没有晶格匹配方面的约束等优势,并且界面间电荷转移往往发生在50fs到亚皮秒范围内。该二维材料异质结由于在可见光波段具有较高的吸收系数,在光电探测器方面有着巨大应用潜力。此外,二维材料异质结的电子能带结构对其光电性质具有至关重要的影响,本发明还提出了二维材料异质结的建模分析方法,通过在PtSe2层间增加MoS2层实现对二维材料PtSe2的能带结构的调控,改善和提高了光电性能,步骤简单、易于操作,能够提高设计效率,在材料及性质研究方面有着明显的优势和应用前景。附图说明[0016] 图1为本发明所设计的新型MoS2/PtSe2异质结结构示意图,(a)主视图;(b)正视图;(c)俯视图。[0017] 图2为本发明所设计的新型MoS2/PtSe2异质结能带结构示意图,(a)MoS2/PtSe2异质结能带结构;(b)MoS2/PtSe2异质结‑2eV到2eV能级范围能带结构。[0018] 图3为本发明所设计的新型MoS2/PtSe2异质结投影态密度分析曲线图。[0019] 图4为本发明所设计的新型MoS2/PtSe2异质结介电常数实部和虚部曲线图。[0020] 图5为本发明所设计的新型MoS2/PtSe2异质结吸收系数谱。具体实施方式[0021] 为使本发明的目的、内容和优点更加清楚,下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。[0022] 实施例1[0023] 本发明提供了一种新型的具有高吸收系数的二维材料异质结结构,该异质结结构包括4层,自上而下依次为:单层二维材料I、单层二维材料II、单层二维材料I、单层二维材料II;二维材料1为硒化铂(PtSe2),二维材料2为二硫化钼(MoS2)。所述二维材料异质结具有接近于零但又不为零的带隙宽度,且在可见光波段具有较高的吸收系数,可用于光电探测器。[0024] 所述二维材料异质结为六方晶系。[0025] 其中,所述二维材料异质结的晶格常数为γ=120°。[0026] 其中,所述二维材料异质结具有0.1670eV的禁带宽度。[0027] 如图1所示,图1为本发明所设计的MoS2/PtSe2异质结结构示意图,至上而下依次为:PtSe2单层、MoS2单层、PtSe2单层、MoS2单层。图1中a、b和c分别为MoS2/PtSe2异质结结构的主视图、正视图和俯视图。图1中所示结构是将MoS2体材料(γ=120°)和PtSe2体材料( γ=120°)模型切(001)晶面得到单层MoS2和单层PtSe2,然后将单层MoS2和单层PtSe2垂直堆叠并添加真空层 构成MoS2/PtSe2异质结模型。该异质结属于六方晶系,晶格常数为γ=120°。[0028] 为了分析所述二维材料异质结构的性能,本发明还提供了一种二维材料异质结结构的建模分析方法,其包括:[0029] 步骤1,使用MaterialsProject材料库构建MoS2体材料模型,空间群为P63/MMC[194],晶格常数为 γ=120°。构建PtSe2体材料模型,空间群为P3M1[164], γ =120°。将模型导入到MaterialsStudio仿真软件中。[0030] 步骤2,采用MaterialsStudio仿真软件将步骤1导入的MoS2体材料模型切晶面(001)得到单层MoS2模型,将PtSe2体材料模型切晶面(001)得到单层PtSe2模型。[0031] 步骤3,通过MaterialsStudio仿真软件的“Buildlayer”功能将步骤2得到的单层MoS2模型和单层PtSe2模型垂直堆叠2周期并添加真空层 构成MoS2/PtSe2异质结模型。构建的MoS2/PtSe2异质结的晶格常数为 γ=120°。[0032] 步骤4,将步骤3构建的MoS2/PtSe2异质结模型导入到VASP仿真软件中,采用VASP仿真软件对步骤3构建的MoS2/PtSe2异质结模型进行结构优化。[0033] 所述步骤4对所述MoS2/PtSe2异质结进行结构优化的步骤中,截断能选取为400‑600eV,k点为6*6*1,电子收敛标准设置为1e‑5数量级,离子收敛标准设置为0.05。[0034] 所述步骤4中结构优化后的MoS2/PtSe2异质结的晶格常数为γ=120°。[0035] 所述步骤4对所述异质结自洽计算时,截断能选取为500eV,k点为8*8*1,离子位置优化最大步数设置为0。[0036] 步骤5,选择步骤4优化得到的能量最低的MoS2/PtSe2异质结结构作为最稳定结构,采用VASP仿真软件进行自洽计算,获得WAVECAR和CHGCAR文件,随后调整参数进行非自洽计算。[0037] 异质结的能带结构和光电性能计算基于密度泛函理论(DFT)的CASTEP代码完成,在VASP仿真软件软件中实现。采用PBE泛函描述电子交换相关势,离子与电子的相互作用用赝势和投影缀加平面波(PAW)表示。计算所述MoS2/PtSe2异质结的能带结构时,截断能选取为500eV,k路径设定为由G(0,0,0),K(0,1/2,0),M(‑1/3,2/3,0)三个高对称点围成的三角形闭合路径,电子收敛标准设置为1e‑5数量级,离子收敛标准设置为0.05。计算所述MoS2/PtSe2异质结的态密度时,k点为13*13*1,态密度数据点个数选取为2000,截断能不变。计算所述MoS2/PtSe2异质结的光学性质时,k点为15*15*1,总能带数量设定为80,截断能不变。[0038] 步骤6,采用vaspkit仿真软件处理步骤5的非自洽计算结果,包括二维材料异质结的能带结构、态密度、电子能量损失谱、介电常数、吸收系数等,并对所述二维材料异质结的性能进行分析。[0039] 如图2所示,图2为本发明所设计的新型MoS2/PtSe2异质结能带结构示意图,k路径设定为由G(0,0,0),K(0,1/2,0),M(‑1/3,2/3,0)三个高对称点围成的三角形闭合路径。费米能级接近导带,且导带极小值和价带极大值不在同一个高对称点上,即不在k空间的同一位置上,为间接带隙半导体,但禁带宽度Eg=0.1670eV,远小于MoS2单层(1.78eV)和PtSe2单层(1.39eV)的禁带宽度,接近于零。[0040] 如图3所示,图3为本发明所设计的新型MoS2/PtSe2异质结态密度分析曲线图,该曲线既包含了总态密度也分析了投影态密度。态密度图是和能带图的能量轴精确对应的,即0eV能量处对应费米能级。图中1曲线是总态密度,4曲线是Mo原子的d轨道对总态密度的贡献,3曲线是Se原子的p轨道对总态密度的贡献,5曲线是S原子的p轨道对总态密度的贡献,7曲线是Pt原子的d轨道对总态密度的贡献。对于态密度,Mo原子的d电子依然是主导而Se原子p轨道次之,随后是S原子的p轨道和Pt原子的d轨道,但是贡献比起前面两种原子非常小。[0041] 如图4所示,图4为本发明所设计的新型MoS2/PtSe2异质结介电常数实部和虚部曲线图。其中,xx方向(标记1曲线)和yy方向(标记2曲线)的介电常数实部曲线是完全重合的,xx方向(标记4曲线)和yy方向(标记5曲线)的介电常数虚部曲线也是完全重合的。这是因为,xx方向和yy方向是二维材料平面内的两个方向,这两个方向是完全等效的。而zz方向是薄膜的法向,二维材料在这个方向上已经进入了量子域,这个方向上的各种性质和面内其他两个方向将完全不同,特别是介电函数。在高能区域三个方向的介电函数参数收敛于相同值,这是因为,在高能区域辐射场和体系的作用属于量子电动力学的范畴,会发生粒子的湮灭和产生。介电函数虚部一般意义上是材料的损耗。介电函数的虚部在xx方向和yy方向在2.5eV左右的区域有一个极强峰,而zz方向的介电函数虚部在2.5eV和4eV左右区域有两个较强峰,在5‑10eV附近区域也有微弱峰存在。[0042] 如图5所示,图5为本发明所设计的新型MoS2/PtSe2异质结的吸收系数谱。图中1号曲线和2号曲线为单层PtSe2和单层MoS2在zz方向上的吸收系数,3号曲线为所设计MoS2/PtSe2异质结在zz方向上的吸收系数。如图所示,所设计MoS2/PtSe2异质结在200‑1000nm波段附近有极强的吸收峰,相较于单层PtSe2和单层MoS2,异质结的峰值和峰宽都增加。[0043] 以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本发明的保护范围。
专利地区:四川
专利申请日期:2021-12-27
专利公开日期:2024-06-18
专利公告号:CN114864713B