可左右滑动选省市

用于光辅助电催化分解水产氢的等离子体催化剂及制备方法

更新时间:2024-07-01
用于光辅助电催化分解水产氢的等离子体催化剂及制备方法 专利申请类型:发明专利;
地区:湖南-长沙;
源自:长沙高价值专利检索信息库;

专利名称:用于光辅助电催化分解水产氢的等离子体催化剂及制备方法

专利类型:发明专利

专利申请号:CN202210444623.2

专利申请(专利权)人:中南大学
权利人地址:湖南省长沙市岳麓区岳麓山左家垅

专利发明(设计)人:刘敏,张晓东,李黄经纬,傅俊伟,李红梅,林璋

专利摘要:本发明公开了用于光辅助电催化分解水产氢的等离子体催化剂及制备方法,等离子体催化剂包括:二维材料;金属纳米粒子,金属纳米粒子负载在所述二维材料上;金属纳米粒子具有等离子体共振效应,包括Au、Ag、Cu、Al纳米粒子中的一种或多种;制备方法包括:将二维材料分散于金属纳米粒子溶胶中;经搅拌处理,所得产物经离心、干燥处理,得到金属纳米粒子负载在二维材料上的等离子体催化剂。本发明用于光辅助电催化分解水产氢的等离子体催化剂的金属纳米粒子表面具有等离子体共振效应,有效降低了电催化分解水产氢的过电位,显著地减少了能耗,实现了催化效率的最大化。

主权利要求:
1.用于光辅助电催化分解水产氢的等离子体催化剂,其特征在于,包括:二维材料;所述二维材料包括:过渡金属硫化合物WS2;金属纳米粒子,所述金属纳米粒子负载在所述二维材料上;
其中,所述金属纳米粒子具有等离子体共振效应,包括Al纳米粒子;所述金属纳米粒子的微观形态包括纳米球状;
所述用于光辅助电催化分解水产氢的等离子体催化剂通过以下步骤进行制备:将二维材料分散于金属纳米粒子溶胶中;经搅拌处理,所得产物经离心、干燥处理,得到金属纳米粒子负载在二维材料上的等离子体催化剂;
所述Al纳米粒子溶胶的制备过程,包括以下步骤:量取4mL的四氢呋喃和75μL的20mM二硫代苯甲酸酯聚苯乙烯溶液,加入到500μL的浓度为0.50M的H3Al甲苯溶液和60μL的100mM的Ti[OCH(CH3)2]4甲苯溶液中,迅速搅拌2分钟,然后在60℃下老化3h,得银色Al纳米粒子溶胶;
所述二维材料与金属纳米粒子溶胶的质量体积比为1mg:50mL;
所述金属纳米粒子的负载量为10wt%;
所述二维材料的制备方法如下:
将硫粉放置在管式炉前端,WO3放至管式炉后端,在Ar气气氛下,加热至500℃,保温5h,气流量为100sccm,之后自然冷却至室温,得到二维材料WS2;
所述WS2尺度为50μm~500μm。 说明书 : 用于光辅助电催化分解水产氢的等离子体催化剂及制备方法技术领域[0001] 本发明属于制氢催化剂技术领域,涉及用于光辅助电催化分解水产氢的等离子体催化剂及制备方法。背景技术[0002] 氢能是一种重要的清洁能源,以水为原料,进行电解水制氢是满足可再生电力储存需求的最有希望的方法之一。目前工业氢主要通过在碱性溶液中电解水来生产,包括阴极析氢反应(HER)和阳极析氧反应(OER),制备过程中所采用的催化剂主要是以Pt为代表的贵金属材料,其催化析氢活性佳,但是因资源匮乏、价格昂贵,限制了其大规模应用。目前利用金属纳米颗粒、非贵金属材料制备低成本、高效能的电解水制氢催化剂,替代贵金属的应用,取得了重要进展,但是,如何提高催化剂的利用率以及降低过电位减少耗能是当前研究的难点。发明内容[0003] 为了达到上述目的,本发明提供用于光辅助电催化分解水产氢的等离子体催化剂及制备方法,该催化剂的金属纳米粒子表面具有等离子体共振效应,有效降低了电催化分解水产氢的过电位,显著地减少了能耗,实现了催化效率的最大化;同时,该等离子体催化剂的原材料成本低,制备方法简单,适用于大规模地工业化生产和使用,解决了现有技术中存在的问题。[0004] 本发明所采用的技术方案是,用于光辅助电催化分解水产氢的等离子体催化剂,包括:[0005] 二维材料;[0006] 金属纳米粒子,所述金属纳米粒子负载在所述二维材料上;[0007] 其中,所述金属纳米粒子具有等离子体共振效应,包括Au、Ag、Cu、Al纳米粒子中的一种或多种。[0008] 进一步地,二维材料包括:碳化钼、氧化钼、过渡金属硫化合物、二维金属有机框架材料、二维共价有机框架材料中的一种或几种。[0009] 更进一步地,过渡金属硫化合物包括:MoS2、WS2、MoSe2中的一种;二维金属有机框架材料包括:MAMS‑1、UiO‑67、NTU‑9、Fe(Py2th)中的一种;二维共价有机框架材料包括:COF‑1、PolyTB‑COF、COF‑43中的一种。[0010] 进一步地,金属纳米粒子的微观形态包括纳米棒状、纳米块状、纳米突刺状、纳米球状中的一种。[0011] 本发明的另一发明目的,在于提供上述用于光辅助电催化分解水产氢的等离子体催化剂的制备方法,包括:[0012] 将二维材料分散于金属纳米粒子溶胶中;[0013] 经搅拌处理,所得产物经离心、干燥处理,得到金属纳米粒子负载在二维材料上的等离子体催化剂。[0014] 进一步地,金属纳米粒子溶胶的制备过程,包括以下步骤:[0015] 以冰水为溶剂,向冰水中添加NaBH4、抗坏血酸、葡萄糖、氯化亚锡、亚硫酸钠中的一种作为还原剂,配制浓度为0.01M 5M的还原液;~[0016] 将所述还原液以1:10 500的体积比加入至含有金属化合物和稳定剂的溶液中,~经搅拌以及室温下避光老化,得到浓度为0.01mM‑10mM的金属纳米粒子溶胶。[0017] 更进一步地,含有金属化合物和稳定剂的溶液中:金属化合物包括Au、Ag、Cu或Al化合物中的一种,其浓度为0.01M 15M;稳定剂包括柠檬酸钠、PVP、十二烷基硫酸钠中的一~种,其浓度为0.001M 15M。~[0018] 进一步地,二维材料与金属纳米粒子溶胶的质量体积比为1mg:(1mL 50mL)。~[0019] 进一步地,金属纳米粒子的负载量为1wt% 20wt%。~[0020] 本发明的有益效果是:本发明实施例制备的等离子体催化剂具有较高的金属纳米粒子负载量,不易发生团聚,稳定性好,改善了现有技术中金属纳米粒子负载量低,并且容易团聚失活的问题;利用金属纳米粒子的等离子体激元场提高其光吸收能力,降低反应势垒,提高电催化反应的效能,有效降低过电位,减少能耗;制备的二维材料具有更高的电导率,有利于电子传输。附图说明[0021] 为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。[0022] 图1是本发明实施例Au纳米粒子的微观形貌图。[0023] 图2是本发明实施例Al纳米粒子的微观形貌图。[0024] 图3是本发明实施例Ag纳米粒子、N‑Mo2C与Ag/N‑Mo2C的紫外‑可见吸收光谱图。[0025] 图4是本发明实施例Ag/N‑Mo2C的透射电镜图。[0026] 图5是本发明实施例有无光照射下,Ag纳米粒子、N‑Mo2C与Ag/N‑Mo2C的电催化水分解制氢(HER)曲线图。[0027] 图6是本发明实施例有无光照射下,Ag纳米粒子、N‑Mo2C与Ag/N‑Mo2C的电催化水分解制氢过电位对比柱状图。[0028] 图7是本发明实施例Ag纳米粒子、N‑Mo2C与Ag/N‑Mo2C的光电流响应曲线。[0029] 图8是本发明实施例Au/MoS2的电催化水分解制氢(HER)电流‑时间曲线图。[0030] 图9是本发明实施例Al/WS2的电催化水分解制氢(HER)电流‑时间曲线图。[0031] 图10是本发明实施例Cu/MoS2的电催化水分解制氢(HER)电流‑时间曲线图。具体实施方式[0032] 下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。[0033] 实施例1[0034] 采用化学合成方式制备二维材料:[0035] 将制备二维材料的原料转移至管式炉中,在Ar/H2的混合气氛下(Ar占H2体积的5%~20%),加热至300℃ 1500℃,保温0.5h 5h,自然冷却至室温,得到二维材料;所得二维材料~ ~还可与氮源以1:10的质量比混合,并转移至管式炉中,在Ar/H2的混合气氛下(Ar占H2体积的5% 20%),加热至300℃ 1200℃,保温0.5h 10h,自然冷却至室温,得到氮掺杂的二维材料。~ ~ ~二维材料的尺度为0.1µm×0.1µm 2µm×2µm。~[0036] 采用上述化学合成方式可以制备碳化钼、氧化钼、过渡金属硫化合物、二维金属有机框架材料、二维共价有机框架材料等二维材料;二维材料具有优异的电子传输特性。[0037] 过渡金属硫化合物包括:MoS2、WS2、MoSe2中的一种;[0038] 二维金属有机框架材料包括:MAMS‑1、UiO‑67、NTU‑9、Fe(Py2th)(铁负载2‑噻吩基吡啶)中的一种;[0039] 二维共价有机框架材料包括:COF‑1、PolyTB‑COF、COF‑43中的一种。[0040] 实施例2[0041] 采用化学合成方式制备二维材料N‑Mo2C:[0042] 取5gMoO3置于瓷舟内,并转移至管式炉内,在Ar/H2(Ar占H2体积的15%)的混合气氛下加热至900℃,保温1h,然后自然降温至室温,得到二维材料MoO2;然后将100mg的二维材料MoO2与1g的二聚二胺混合置于瓷舟内并转移至管式炉内,在Ar/H2(Ar占H2体积的15%)的混合气氛下加热至700℃,保温2h,然后自然冷却至室温,得到氮掺杂的二维材料N‑Mo2C,其尺度为100μm 500μm。~[0043] 实施例3[0044] 采用液相剥离方式制备二维材料:[0045] 将制备二维材料原料放入烧杯中(烧杯中所放分散剂可为DMF(N,N‑二甲基甲酰胺)、乙醇、正己烷、NMP(N‑甲基吡咯烷酮)等有机溶剂),同时在烧杯中放入冰袋,以防止温度过高,并在50W 1500W的超声功率下,超声0.5h 100h,之后所得超声产物在2000rpm~ ~ ~30000rpm的转速下,离心处理3min 500min,取上清液,得到二维薄膜材料。~[0046] 采用上述液相剥离方式可以制备碳化钼、氧化钼、过渡金属硫化合物、二维金属有机框架材料、二维共价有机框架材料等二维材料。[0047] 实施例4[0048] 采用液相剥离方式制备二维材料MoS2:[0049] 将制备MoS2的粉末放入装有DMF溶液的烧杯中,同时在烧杯中放入冰袋,以防止温度过高,并在500W的超声功率下,超声10h,之后所得超声产物在10000rpm的转速下,离心处理120min,取上清液,得到MoS2二维薄膜,其尺度为50μm~500μm。[0050] 实施例5[0051] 采用化学气相沉积方式制备二维材料:[0052] 将制备二维材料的原料放至管式炉中,在Ar或者N2气氛下,加热至100℃~2500℃,保温0.5h 15h,控制其气流量100 500sccm让其成核生长,之后自然冷却至室温,得到二维~ ~材料。[0053] 采用上述化学气相沉积方式可以制备过渡金属硫化合物等二维材料。[0054] 实施例6[0055] 采用化学气相沉积方式制备二维材料WS2:[0056] 将硫粉放置在管式炉前端,WO3放至管式炉后端,在Ar气气氛下,加热至500℃,保温5h,气流量为100sccm,让其成核生长,之后自然冷却至室温,得到二维材料WS2,其尺度为50μm 500μm。~[0057] 实施例7[0058] 制备金属纳米粒子溶胶:[0059] 以冰水为溶剂,向冰水中添加还原剂,制备浓度为0.01M 5M的还原液,还原剂包括~NaBH4、抗坏血酸、葡萄糖、氯化亚锡或亚硫酸钠;[0060] 将上述还原液以1:10 500的体积比加入至含有金属化合物和稳定剂的溶液中,~搅拌5min,然后在室温下避光老化24h,得到浓度为0.01mM‑10mM的金属纳米粒子溶胶;[0061] 含有金属化合物和稳定剂的溶液中,金属化合物的浓度为0.01M 15M,稳定剂的浓~度为0.001M 15M;金属化合物包括:Au、Ag、Cu或Al的化合物;稳定剂包括柠檬酸钠、PVP或十~二烷基硫酸钠。[0062] 实施例8[0063] 制备Ag纳米粒子溶胶:[0064] 量取冰水制备6mL的浓度为0.1M的NaBH4溶液,加入到200mL的浓度为0.25mM的AgNO3和0.12mM的柠檬酸钠溶液中,迅速搅拌5分钟,然后在室温下避光老化24h,得黄色Ag纳米粒子溶胶,溶胶中Ag纳米粒子为颗粒状,其粒度为5nm 50nm。~[0065] Ag纳米粒子的等离子体共振特征吸收峰位于380nm‑500nm。[0066] 实施例9[0067] 制备Ag纳米粒子溶胶:[0068] 除AgNO3溶液的浓度为0.0103mM,其余均与实施例8相同。[0069] 实施例10[0070] 制备Au纳米棒溶胶:[0071] 量取冰水制备15mL的浓度为0.4M的NaBH4溶液,加入到120mL的浓度为0.25mM的氯金酸(HAuCl)4 和0.05M的十六烷基三甲基溴化铵溶液(CTAB)中,迅速搅拌5分钟,然后在室温下避光老化24h,得棕色Au纳米粒子溶胶,溶胶中Au纳米粒子的其形貌为金纳米棒,其粒度为50nm 500nm,如图1所示。~[0072] Au纳米粒子的等离子体共振特征吸收峰位于400nm‑800nm。[0073] 实施例11[0074] 制备Au纳米棒溶胶:[0075] 除氯金酸(HAuCl4)溶液的浓度为11.25mM,其余均与实施例10相同。[0076] 实施例12[0077] 制备Cu纳米粒子溶胶:[0078] 量取冰水制备10mL的浓度为0.25M的NaBH4溶液,加入到150mL的浓度为0.25mM的Cu(NO3)2和0.05M的十六烷基三甲基溴化铵溶液(CTAB)中,迅速搅拌5分钟,然后在室温下避光老化24h,得暗绿色Cu纳米粒子溶胶,溶胶中Cu纳米粒子的其形貌为铜纳米颗粒,其粒度为10nm 500nm。~[0079] Cu纳米粒子的等离子体共振特征吸收峰位于550nm‑800nm。[0080] 实施例13[0081] 制备Al纳米粒子溶胶:[0082] 量取4mL的四氢呋喃和75μL的20mM二硫代苯甲酸酯聚苯乙烯溶液(CDTB‑PS),加入到500μL的浓度为0.50M的H3Al甲苯溶液和60μL的100mM的Ti[OCH(CH3)2]4甲苯溶液中,迅速搅拌2分钟,然后在60℃下老化3h,得银色Al纳米粒子溶胶,溶胶中Al纳米粒子的其形貌如图2所示,为纳米球,其粒度为10nm 500nm。Al纳米粒子的等离子体共振特征吸收峰位于~350nm 800nm。~[0083] 上述金属纳米粒子具有等离子体共振特征吸收峰,具有等离子体共振效应:金属纳米粒子受共振光子诱发,其表面形成价电子的集体共振,其非辐射衰变过程中把光能转换成高能热电子,可以降低电催化析氢反应的能垒,促进电催化析氢反应。[0084] 实施例14[0085] 制备用于光辅助电催化分解水产氢的等离子体催化剂:[0086] 将制得的二维材料以1mg:(1mL 50mL)的质量体积比分散于金属纳米粒子溶胶中,~在室温下搅拌反应10h 72h,金属纳米粒子通过静电作用自组装到二维材料上,通过离心、~冷冻干燥处理,得到金属纳米粒子负载量为1wt% 20wt%的等离子体催化剂,于真空条件下~保存,以防止氧化失效。[0087] 本发明采用导电性能良好的二维材料,以增加电子的传输速率,负载具有等离子体共振效应的金属纳米粒子,用光激发金属纳米粒子的等离子体共振效应,产生参与催化反应的共振电子,其作为活性位点大大提高了催化效率,应用于电解水产氢、电解水产氧、CO2还原、N2还原等方面,本发明等离子体效应的利用,显著提高了电催化产氢效果,降低了能耗。[0088] 实施例15[0089] 制备用于光辅助电催化分解水产氢的等离子体催化剂:[0090] 取10mg实施例2制备的N‑Mo2C分散在40mL实施例8制备的Ag纳米粒子溶胶中,在室温下搅拌反应24h,使银纳米粒子通过静电相互作用自组装负载到N‑Mo2C上,经离心、冷冻干燥处理,得到负载量为10wt%的等离子体催化剂,记为Ag/N‑Mo2C。[0091] 图3为Ag纳米粒子、N‑Mo2C、Ag/N‑Mo2C的紫外‑可见吸收光谱图,N‑Mo2C对紫外线没有吸收波,Ag纳米粒子对紫外线有较强的吸收波,Ag/N‑Mo2C对紫外线有一定的吸收波,说明Ag/N‑Mo2C成功负载了Ag纳米粒子。[0092] 图4为Ag/N‑Mo2C的透射电镜图,由图4可以看出,银纳米粒子成功地负载在N‑Mo2C上,且分散性良好。[0093] 室温下,将Ag/N‑Mo2C涂覆在碳纸电极上作为工作电极,使用标准三电极系统在氮气饱和的0.5M磷酸缓冲溶液中进行电催化分解水产氢反应,测试加光与不加光条件下体系的电催化性能:[0094] 图5为Ag/N‑Mo2C的电催化水分解制氢(HER)曲线图,根据图5的测试结果显示,加光条件下,引发等离子体催化剂中金属纳米粒子发生等离子体共振效应,明显提高了电解水制氢的催化效果。[0095] 图6为Ag/N‑Mo2C的电催化水分解制氢过电位对比柱状图,根据图6的测试结果显2示,在电流密度为10mA/cm 时,Ag纳米粒子、N‑Mo2C和Ag/N‑Mo2C在不加光和加光的过电位差依次为27mV、66mV、104mV,说明催化剂中引入具有等离子体共振效应的金属纳米粒子明显提高了电催化分解水产氢的效率,减少了能耗。[0096] 图7为Ag/N‑Mo2C的光电流响应曲线图,根据图7的测试结果显示,采用Ag/N‑Mo2C为催化剂的体系的光电流是采用N‑Mo2C为催化剂的体系的7倍左右,仅采用Ag纳米粒子作为催化剂的体系几乎不产生光电流,产生这一现象的原因是由于Ag纳米颗粒没有很好的成膜,电荷传输受阻,而基底N‑Mo2C可以提供一个很好的电子传输通道。这说明Ag/N‑Mo2C具有明显的光响应效果。[0097] 实施例16[0098] 制备用于光辅助电催化分解水产氢的等离子体催化剂:[0099] 除10mg实施例2制备的N‑Mo2C分散在4mL实施例8制备的Ag纳米粒子溶胶中,其余均与实施例15相同。[0100] 实施例17[0101] 制备用于光辅助电催化分解水产氢的等离子体催化剂:[0102] 取10mg实施例4制备的MoS2分散在10mL实施例10制备的Au纳米棒溶胶中,在室温下搅拌反应10h,经离心、冷冻干燥处理,得到负载量为5wt%的等离子体催化剂。[0103] 本实施例电催化水分解制氢(HER)电流‑时间曲线数据如图8所示,在加光(on)和‑2 ‑2不加光(off)的条件下电催化水分解制氢过电位差为1mAcm ,光电流为14mAcm ,说明本实施例制得的等离子体催化剂具有明显的光响应效果。[0104] 实施例18[0105] 制备用于光辅助电催化分解水产氢的等离子体催化剂:[0106] 取10mg实施例6制备的WS2分散在500mL实施例13制备的Al纳米粒子溶胶中,在室温下搅拌反应72h,经离心、冷冻干燥处理,得到负载量为10wt%的等离子体催化剂。[0107] 本实施例电催化水分解制氢(HER)电流‑时间曲线数据如图9所示,在加光(on)和‑2 ‑2不加光(off)的条件下电催化水分解制氢过电位差为0.55mAcm ,光电流为11.5mAcm ,说明本实施例制得的等离子体催化剂具有明显的光响应效果。[0108] 实施例19[0109] 制备用于光辅助电催化分解水产氢的等离子体催化剂:[0110] 除取10mg实施例6制备的WS2分散在1000mL实施例13制备的Al纳米粒子溶胶中,其余均与实施例18相同。[0111] 实施例20[0112] 制备用于光辅助电催化分解水产氢的等离子体催化剂:[0113] 取10mg实施例4制备的MoS2分散在500mL实施例12制备的Cu纳米粒子溶胶中,在室温下搅拌反应48h,经离心、冷冻干燥处理,得到负载量为5wt%的等离子体催化剂。[0114] 本实施例电催化水分解制氢(HER)电流‑时间曲线数据如图10所示,在加光和不加‑2 ‑2光的条件下电催化水分解制氢过电位差为0.03mAcm ,光电流为0.25mAcm ,说明本实施例制得的等离子体催化剂具有明显的光响应效果。[0115] 本说明书中的各个实施例均采用相关的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。[0116] 以上所述仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内所作的任何修改、等同替换、改进等,均包含在本发明的保护范围内。

专利地区:湖南

专利申请日期:2022-04-26

专利公开日期:2024-06-18

专利公告号:CN114703497B

电话咨询
读内容
搜本页
回顶部