专利名称:用于车辆强制制动的L3级自动应急灯系统
专利类型:实用新型专利
专利申请号:CN202011492125.2
专利申请(专利权)人:百度(美国)有限责任公司
权利人地址:美国加利福尼亚州
专利发明(设计)人:朱帆
专利摘要:在一个实施方式中,公开了一种用于自动接通自动驾驶车辆(ADV)处的应急灯的方法,装置和系统。确定ADV在第一时刻的当前速度。确定ADV在第一时刻的当前减速。确定当前速度是否满足当前速度条件以及当前减速度是否满足第一时刻的当前减速度条件。响应于确定当前速度满足当前速度条件并且当前减速度满足当前减速度条件,确定ADV的最近减速度历史是否满足最近减速度历史条件以及ADV的预期减速度是否满足预期减速度条件。如果满足任一条件,则自动接通ADV的应急灯。
主权利要求:
1.一种自动控制自动驾驶车辆应急灯的方法,包括:
确定自动驾驶车辆的当前速度是否满足当前速度条件、以及所述自动驾驶车辆的当前减速度是否满足第一时刻的当前减速度条件;
响应于确定所述当前速度满足所述当前速度条件并且所述当前减速度满足所述当前减速度条件,相对于所述第一时刻,确定所述自动驾驶车辆的最近减速度历史是否满足最近减速度历史条件以及所述自动驾驶车辆的预期减速度是否满足预期减速度条件;以及响应于相对于所述第一时刻,确定所述最近减速度历史满足所述最近减速度历史条件或者所述预期减速度满足所述预期减速度条件,自动接通所述自动驾驶车辆的应急灯。
2.根据权利要求1所述的方法,其中,当所述当前速度高于第一速度阈值时,所述当前速度满足所述当前速度条件。
3.根据权利要求1所述的方法,其中,当所述当前减速度高于第一减速度阈值时,所述当前减速度满足所述当前减速度条件。
4.根据权利要求1所述的方法,其中,当自从所述第一时刻以来,所述自动驾驶车辆已经以高于第一平均减速度阈值的第一平均减速度减慢了高于第一速度差阈值的第一速度差,或者已经以高于第二平均减速度阈值的第二平均减速度减慢了高于第二速度差阈值的第二速度差时,所述最近减速度历史满足所述最近减速度历史条件,其中,所述第一速度差阈值高于所述第二速度差阈值,所述第一平均减速度阈值低于所述第二平均减速度阈值。
5.根据权利要求1所述的方法,其中,确定所述预期减速度是否满足所述预期减速度条件还包括:基于所述自动驾驶车辆的所述当前速度、直接位于所述自动驾驶车辆前方的前车的当前速度以及所述前车与所述自动驾驶车辆之间的距离来确定碰撞时间;
确定所述碰撞时间是否低于碰撞时间阈值;以及
响应于确定所述碰撞时间不低于所述碰撞时间阈值,确定所述预期减速度不满足所述预期减速度条件。
6.根据权利要求5所述的方法,还包括:响应于确定所述碰撞时间低于所述碰撞时间阈值,基于所述自动驾驶车辆的所述当前速度、所述前车的所述当前速度以及所述前车与所述自动驾驶车辆之间的距离来确定所述预期减速度;
确定所述预期减速度是否高于第二减速度阈值;
响应于确定所述预期减速度高于所述第二减速度阈值,确定所述预期减速度满足所述预期减速度条件;以及响应于确定所述预期减速度不高于所述第二减速度阈值,确定所述预期减速度不满足所述预期减速度条件。
7.根据权利要求1所述的方法,其中,在接通所述应急灯之后,所述应急灯保持开启,直到所述应急灯响应于用户操作而被关闭。
8.根据权利要求1所述的方法,其中,所述应急灯在接通时呈现闪光图案。
9.一种存储有指令的非暂时性机器可读介质,所述指令在由处理器执行时致使所述处理器执行操作,所述操作包括:确定自动驾驶车辆的当前速度是否满足当前速度条件、以及所述自动驾驶车辆的当前减速度是否满足第一时刻的当前减速度条件;
响应于确定所述当前速度满足所述当前速度条件并且所述当前减速度满足所述当前减速度条件,相对于所述第一时刻,确定所述自动驾驶车辆的最近减速度历史是否满足最近减速度历史条件以及所述自动驾驶车辆的预期减速度是否满足预期减速度条件;以及响应于相对于所述第一时刻,确定所述最近减速度历史满足所述最近减速度历史条件或者所述预期减速度满足所述预期减速度条件,自动接通所述自动驾驶车辆的应急灯。
10.根据权利要求9所述的机器可读介质,其中,当所述当前速度高于第一速度阈值时,所述当前速度满足所述当前速度条件。
11.根据权利要求9所述的机器可读介质,其中,当所述当前减速度高于第一减速度阈值时,所述当前减速度满足所述当前减速度条件。
12.根据权利要求9所述的机器可读介质,其中,当自从所述第一时刻以来,所述自动驾驶车辆已经以高于第一平均减速度阈值的第一平均减速度减慢了高于第一速度差阈值的第一速度差,或者已经以高于第二平均减速度阈值的第二平均减速度减慢了高于第二速度差阈值的第二速度差时,所述最近减速度历史满足所述最近减速度历史条件,其中,所述第一速度差阈值高于所述第二速度差阈值,所述第一平均减速度阈值低于所述第二平均减速度阈值。
13.根据权利要求9所述的机器可读介质,其中,确定所述预期减速度是否满足所述预期减速度条件还包括:基于所述自动驾驶车辆的所述当前速度、直接位于所述自动驾驶车辆前方的前车的当前速度以及所述前车与所述自动驾驶车辆之间的距离来确定碰撞时间;
确定所述碰撞时间是否低于碰撞时间阈值;以及
响应于确定所述碰撞时间不低于所述碰撞时间阈值,确定所述预期减速度不满足所述预期减速度条件。
14.根据权利要求13所述的机器可读介质,其中,所述操作还包括:响应于确定所述碰撞时间低于所述碰撞时间阈值,基于所述自动驾驶车辆的所述当前速度、所述前车的所述当前速度以及所述前车与所述自动驾驶车辆之间的距离来确定所述预期减速度;
确定所述预期减速度是否高于第二减速度阈值;
响应于确定所述预期减速度高于所述第二减速度阈值,确定所述预期减速度满足所述预期减速度条件;以及响应于确定所述预期减速度不高于所述第二减速度阈值,确定所述预期减速度不满足所述预期减速度条件。
15.根据权利要求9所述的机器可读介质,其中,在接通所述应急灯之后,所述应急灯保持开启,直到所述应急灯响应于用户操作而被关闭。
16.根据权利要求9所述的机器可读介质,其中,所述应急灯在接通时呈现闪光图案。
17.一种自动控制自动驾驶车辆应急灯的系统,包括:
处理器;以及
存储器,所述存储器联接至所述处理器,以存储指令,所述指令在由所述处理器执行时致使所述处理器执行操作,所述操作包括:确定自动驾驶车辆的当前速度是否满足当前速度条件、以及所述自动驾驶车辆的当前减速度是否满足第一时刻的当前减速度条件;
响应于确定所述当前速度满足所述当前速度条件并且所述当前减速度满足所述当前减速度条件,相对于所述第一时刻,确定所述自动驾驶车辆的最近减速度历史是否满足最近减速度历史条件以及所述自动驾驶车辆的预期减速度是否满足预期减速度条件;以及响应于相对于所述第一时刻,确定所述最近减速度历史满足所述最近减速度历史条件或者所述预期减速度满足所述预期减速度条件,自动接通所述自动驾驶车辆的应急灯。
18.根据权利要求17所述的系统,其中,当所述当前速度高于第一速度阈值时,所述当前速度满足所述当前速度条件。
19.根据权利要求17所述的系统,其中,当所述当前减速度高于第一减速度阈值时,所述当前减速度满足所述当前减速度条件。
20.根据权利要求17所述的系统,其中,当自从所述第一时刻以来,所述自动驾驶车辆已经以高于第一平均减速度阈值的第一平均减速度减慢了高于第一速度差阈值的第一速度差,或者已经以高于第二平均减速度阈值的第二平均减速度减慢了高于第二速度差阈值的第二速度差时,所述最近减速度历史满足所述最近减速度历史条件,其中,所述第一速度差阈值高于所述第二速度差阈值,所述第一平均减速度阈值低于所述第二平均减速度阈值。
21.一种自动驾驶车辆,包括根据权利要求17‑20中任一项所述的系统。 说明书 : 用于车辆强制制动的L3级自动应急灯系统技术领域[0001] 本公开的实施方式总体涉及操作自动驾驶车辆。更具体地,本公开的实施方式涉及自动控制自动驾驶车辆处的应急灯。背景技术[0002] 以自动驾驶模式运行(例如,无人驾驶)的车辆可将乘员、尤其是驾驶员从一些驾驶相关的职责中解放出来。当以自动驾驶模式运行时,车辆可使用车载传感器导航到各个位置,从而允许车辆在最少人机交互的情况下或在没有任何乘客的一些情况下行驶。[0003] 已经定义了自动驾驶的不同级别(L0至L5)。在等级3,驾驶员在等级3的汽车中仍然是必需的,但是在某些交通或环境条件下能够完全将"安全关键功能"转移到车辆。这意味着驾驶员仍然存在并且如果需要将进行干预,但是不需要以与先前级别相同的方式来监视情况。[0004] 当在自动驾驶车辆上施加强制制动时,应该接通ADV处的应急灯,以警告后面的车辆。然而,这不一定是自动完成的,特别是在级别3。发明内容[0005] 在第一方面,本公开提供了一种计算机实施的方法,包括:[0006] 确定自动驾驶车辆的当前速度是否满足当前速度条件、以及所述自动驾驶车辆的当前减速度是否满足第一时刻的当前减速度条件;[0007] 响应于确定所述当前速度满足所述当前速度条件并且所述当前减速度满足所述当前减速度条件,相对于所述第一时刻,确定所述自动驾驶车辆的最近减速度历史是否满足最近减速度历史条件以及所述自动驾驶车辆的预期减速度是否满足预期减速度条件;以及[0008] 响应于相对于所述第一时刻,确定所述最近减速度历史满足所述最近减速度历史条件或者所述预期减速度满足所述预期减速度条件,自动接通所述自动驾驶车辆的应急灯。[0009] 在根据本公开的某些示例性实施方式中,当所述当前速度高于第一速度阈值时,所述当前速度满足所述当前速度条件。[0010] 在根据本公开的某些示例性实施方式中,当所述当前减速度高于第一减速度阈值时,所述当前减速度满足所述当前减速度条件。[0011] 在根据本公开的某些示例性实施方式中,当自从所述第一时刻以来,所述自动驾驶车辆已经以高于第一平均减速度阈值的第一平均减速度减慢了高于第一速度差阈值的第一速度差,或者已经以高于第二平均减速度阈值的第二平均减速度减慢了高于第二速度差阈值的第二速度差时,所述最近减速度历史满足所述最近减速度历史条件,其中,所述第一速度差阈值高于所述第二速度差阈值,所述第一平均减速度阈值低于所述第二平均减速度阈值。[0012] 在根据本公开的某些示例性实施方式中,确定所述预期减速度是否满足所述预期减速度条件还包括:[0013] 基于所述自动驾驶车辆的所述当前速度、直接位于所述自动驾驶车辆前方的前车的当前速度以及所述前车与所述自动驾驶车辆之间的距离来确定碰撞时间;[0014] 确定所述碰撞时间是否低于碰撞时间阈值;以及[0015] 响应于确定所述碰撞时间不低于所述碰撞时间阈值,确定所述预期减速度不满足所述预期减速度条件。[0016] 在根据本公开的某些示例性实施方式中,所述方法还包括:响应于确定所述碰撞时间低于所述碰撞时间阈值,[0017] 基于所述自动驾驶车辆的所述当前速度、所述前车的所述当前速度以及所述前车与所述自动驾驶车辆之间的距离来确定所述预期减速度;[0018] 确定所述预期减速度是否高于第二减速度阈值;[0019] 响应于确定所述预期减速度高于所述第二减速度阈值,确定所述预期减速度满足所述预期减速度条件;以及[0020] 响应于确定所述预期减速度不高于所述第二减速度阈值,确定所述预期减速度不满足所述预期减速度条件。[0021] 在根据本公开的某些示例性实施方式中,在接通所述应急灯之后,所述应急灯保持开启,直到所述应急灯响应于用户操作而被关闭。[0022] 在根据本公开的某些示例性实施方式中,所述应急灯在接通时呈现闪光图案。[0023] 在第二方面,本公开提供了一种存储有指令的非暂时性机器可读介质,所述指令在由处理器执行时致使所述处理器执行操作,所述操作包括:[0024] 确定自动驾驶车辆的当前速度是否满足当前速度条件、以及所述自动驾驶车辆的当前减速度是否满足第一时刻的当前减速度条件;[0025] 响应于确定所述当前速度满足所述当前速度条件并且所述当前减速度满足所述当前减速度条件,相对于所述第一时刻,确定所述自动驾驶车辆的最近减速度历史是否满足最近减速度历史条件以及所述自动驾驶车辆的预期减速度是否满足预期减速度条件;以及[0026] 响应于相对于所述第一时刻,确定所述最近减速度历史满足所述最近减速度历史条件或者所述预期减速度满足所述预期减速度条件,自动接通所述自动驾驶车辆的应急灯。[0027] 在根据本公开的某些示例性实施方式中,当所述当前速度高于第一速度阈值时,所述当前速度满足所述当前速度条件。[0028] 在根据本公开的某些示例性实施方式中,当所述当前减速度高于第一减速度阈值时,所述当前减速度满足所述当前减速度条件。[0029] 在根据本公开的某些示例性实施方式中,当自从所述第一时刻以来,所述自动驾驶车辆已经以高于第一平均减速度阈值的第一平均减速度减慢了高于第一速度差阈值的第一速度差,或者已经以高于第二平均减速度阈值的第二平均减速度减慢了高于第二速度差阈值的第二速度差时,所述最近减速度历史满足所述最近减速度历史条件,其中,所述第一速度差阈值高于所述第二速度差阈值,所述第一平均减速度阈值低于所述第二平均减速度阈值。[0030] 在根据本公开的某些示例性实施方式中,确定所述预期减速度是否满足所述预期减速度条件还包括:[0031] 基于所述自动驾驶车辆的所述当前速度、直接位于所述自动驾驶车辆前方的前车的当前速度以及所述前车与所述自动驾驶车辆之间的距离来确定碰撞时间;[0032] 确定所述碰撞时间是否低于碰撞时间阈值;以及[0033] 响应于确定所述碰撞时间不低于所述碰撞时间阈值,确定所述预期减速度不满足所述预期减速度条件。[0034] 在根据本公开的某些示例性实施方式中,所述操作还包括:响应于确定所述碰撞时间低于所述碰撞时间阈值,[0035] 基于所述自动驾驶车辆的所述当前速度、所述前车的所述当前速度以及所述前车与所述自动驾驶车辆之间的距离来确定所述预期减速度;[0036] 确定所述预期减速度是否高于第二减速度阈值;[0037] 响应于确定所述预期减速度高于所述第二减速度阈值,确定所述预期减速度满足所述预期减速度条件;以及[0038] 响应于确定所述预期减速度不高于所述第二减速度阈值,确定所述预期减速度不满足所述预期减速度条件。[0039] 在根据本公开的某些示例性实施方式中,在接通所述应急灯之后,所述应急灯保持开启,直到所述应急灯响应于用户操作而被关闭。[0040] 在根据本公开的某些示例性实施方式中,所述应急灯在接通时呈现闪光图案。[0041] 在第三方面,本公开提供了一种一种数据处理系统,包括:[0042] 处理器;以及[0043] 存储器,所述存储器联接至所述处理器,以存储指令,所述指令在由所述处理器执行时致使所述处理器执行操作,所述操作包括:[0044] 确定自动驾驶车辆的当前速度是否满足当前速度条件、以及所述自动驾驶车辆的当前减速度是否满足第一时刻的当前减速度条件;[0045] 响应于确定所述当前速度满足所述当前速度条件并且所述当前减速度满足所述当前减速度条件,相对于所述第一时刻,确定所述自动驾驶车辆的最近减速度历史是否满足最近减速度历史条件以及所述自动驾驶车辆的预期减速度是否满足预期减速度条件;以及[0046] 响应于相对于所述第一时刻,确定所述最近减速度历史满足所述最近减速度历史条件或者所述预期减速度满足所述预期减速度条件,自动接通所述自动驾驶车辆的应急灯。[0047] 在根据本公开的某些示例性实施方式中,当所述当前速度高于第一速度阈值时,所述当前速度满足所述当前速度条件。[0048] 在根据本公开的某些示例性实施方式中,当所述当前减速度高于第一减速度阈值时,所述当前减速度满足所述当前减速度条件。[0049] 在根据本公开的某些示例性实施方式中,当自从所述第一时刻以来,所述自动驾驶车辆已经以高于第一平均减速度阈值的第一平均减速度减慢了高于第一速度差阈值的第一速度差,或者已经以高于第二平均减速度阈值的第二平均减速度减慢了高于第二速度差阈值的第二速度差时,所述最近减速度历史满足所述最近减速度历史条件,其中,所述第一速度差阈值高于所述第二速度差阈值,所述第一平均减速度阈值低于所述第二平均减速度阈值。[0050] 在第四方面,本公开提供了一种计算机程序产品,包括计算机程序,所述计算机程序在被处理器执行时实现:[0051] 确定自动驾驶车辆的当前速度是否满足当前速度条件、以及所述自动驾驶车辆的当前减速度是否满足第一时刻的当前减速度条件;[0052] 响应于确定所述当前速度满足所述当前速度条件并且所述当前减速度满足所述当前减速度条件,相对于所述第一时刻,确定所述自动驾驶车辆的最近减速度历史是否满足最近减速度历史条件以及所述自动驾驶车辆的预期减速度是否满足预期减速度条件;以及[0053] 响应于相对于所述第一时刻,确定所述最近减速度历史满足所述最近减速度历史条件或者所述预期减速度满足所述预期减速度条件,自动接通所述自动驾驶车辆的应急灯。[0054] 在第五方面,本公开提供了一种自动驾驶车辆,其包括数据处理系统,所述数据处理系统包括:[0055] 处理器;以及[0056] 存储器,所述存储器联接至所述处理器,以存储指令,所述指令在由所述处理器执行时致使所述处理器执行操作,所述操作包括:[0057] 确定自动驾驶车辆的当前速度是否满足当前速度条件、以及所述自动驾驶车辆的当前减速度是否满足第一时刻的当前减速度条件;[0058] 响应于确定所述当前速度满足所述当前速度条件并且所述当前减速度满足所述当前减速度条件,相对于所述第一时刻,确定所述自动驾驶车辆的最近减速度历史是否满足最近减速度历史条件以及所述自动驾驶车辆的预期减速度是否满足预期减速度条件;以及[0059] 响应于相对于所述第一时刻,确定所述最近减速度历史满足所述最近减速度历史条件或者所述预期减速度满足所述预期减速度条件,自动接通所述自动驾驶车辆的应急灯。附图说明[0060] 本公开的实施方式在附图的各图中以举例而非限制的方式示出,附图中的相同参考标记指示相似元件。[0061] 图1是示出根据一个实施方式的网络化系统的框图。[0062] 图2是示出根据一个实施方式的自动驾驶车辆的示例的框图。[0063] 图3A至图3B是示出根据一个实施方式的与自动驾驶车辆一起使用的感知与规划系统的示例的框图。[0064] 图4是示出根据一个实施方式的可用于确定是否自动接通自动驾驶车辆(ADV)处的应急灯的各种示例性模块的框图。[0065] 图5是示出根据一个实施方式的用于确定是否自动接通自动驾驶车辆(ADV)处的应急灯的示例性方法的流程图。具体实施方式[0066] 将参考以下所讨论的细节来描述本公开的各种实施方式和方面,附图将示出所述各种实施方式。下列描述和附图是本公开的说明,而不应当解释为对本公开进行限制。描述了许多特定细节以提供对本公开的各种实施方式的全面理解。然而,在某些情况下,并未描述众所周知的或常规的细节,以提供对本公开的实施方式的简洁讨论。[0067] 本说明书中对“一个实施方式”或“实施方式”的提及意味着结合该实施方式所描述的特定特征、结构或特性可包括在本公开的至少一个实施方式中。短语“在一个实施方式中”在本说明书中各个地方的出现不必全部指同一实施方式。[0068] 根据一些实施方式,公开了一种用于确定是否自动接通自动驾驶车辆(ADV)处的应急灯的方法,装置和系统。确定自动驾驶车辆(ADV)在第一时刻的当前速度。确定ADV在第一时刻的当前减速。确定当前速度是否满足第一时刻的当前速度条件以及当前减速度是否满足第一时刻的当前减速度条件。响应于确定当前速度满足当前速度条件并且当前减速度满足当前减速度条件,确定ADV的最近减速度历史是否满足最近减速度历史条件并且ADV的预期减速度是否满足预期减速度条件与第一时刻相关。响应于相对于第一时刻确定最近减速度历史满足最近减速度历史条件或者预期减速满足预期减速度条件,自动接通ADV的应急灯。[0069] 在一个实施方式中,当当前速度高于第一速度阈值时,当前速度满足当前速度条件。在一个实施方式中,当当前减速高于第一减速度阈值时,当前减速满足当前减速度条件。[0070] 在一个实施方式中,当自第一时刻以来,ADV已经减慢了第一速度差阈值以上且第一平均减速度高于第一平均减速度阈值的第一速度差,或者已经减慢了第二速度差阈值以上且第二平均减速度高于第二平均减速度阈值的第二速度差时,最近减速度历史满足最近减速度历史条件。特别地,第一速度差阈值高于第二速度差阈值,并且第一平均减速度阈值低于第二平均减速度阈值。[0071] 在一个实施方式中,为了确定预期减速度是否满足预期减速度条件,基于ADV的当前速度,直接位于ADV前方的前车的当前速度以及前车与ADV之间的距离来确定碰撞时间。确定碰撞时间是否低于碰撞时间阈值。响应于确定碰撞时间不低于碰撞时间阈值,将预期减速度确定为不满足预期减速度条件。[0072] 另一方面,如果碰撞时间低于碰撞时间阈值,则基于ADV的当前速度,前车的当前速度以及前车与ADV之间的距离来确定预期减速度。确定预期减速是否高于第二减速度阈值。响应于确定预期减速度高于第二减速度阈值,将预期减速度确定为满足预期减速度条件。另一方面,响应于确定预期减速度不高于第二减速度阈值,将预期减速度确定为不满足预期减速度条件。[0073] 在一个实施方式中,在打开应急灯之后,应急灯被保持打开,直到它响应于用户操作而被关闭。在一个实施方式中,紧急灯在接通时呈现闪光图案。[0074] 图1是示出根据本公开的一个实施方式的自动驾驶网络配置的框图。参考图1,网络配置100包括可通过网络102通信地联接到一个或多个服务器103至104的自动驾驶车辆(ADV)101。尽管示出一个ADV,但多个ADV可通过网络102联接到彼此和/或联接到服务器103至104。网络102可以是任何类型的网络,例如,有线或无线的局域网(LAN)、诸如互联网的广域网(WAN)、蜂窝网络、卫星网络或其组合。服务器103至104可以是任何类型的服务器或服务器群集,诸如,网络或云服务器、应用服务器、后端服务器或其组合。服务器103至104可以是数据分析服务器、内容服务器、交通信息服务器、地图和兴趣点(MPOI)服务器或位置服务器等。[0075] ADV是指可配置成处于自动驾驶模式下的车辆,在所述自动驾驶模式下车辆在极少或没有来自驾驶员的输入的情况下导航通过环境。这种ADV可包括传感器系统,所述传感器系统具有配置成检测与车辆运行环境有关的信息的一个或多个传感器。所述车辆和其相关联的控制器使用所检测的信息来导航通过所述环境。ADV101可在手动模式下、在全自动驾驶模式下或者在部分自动驾驶模式下运行。[0076] 在一个实施方式中,ADV101包括,但不限于,自动驾驶系统(ADS)110、车辆控制系统111、无线通信系统112、用户接口系统113和传感器系统115。ADV101还可包括普通车辆中包括的某些常用部件,诸如:发动机、车轮、方向盘、变速器等,所述部件可由车辆控制系统111和/或ADS110使用多种通信信号和/或命令进行控制,该多种通信信号和/或命令例如,加速信号或命令、减速信号或命令、转向信号或命令、制动信号或命令等。[0077] 部件110至115可经由互连件、总线、网络或其组合通信地联接到彼此。例如,部件110至115可经由控制器局域网(CAN)总线通信地联接到彼此。CAN总线是设计成允许微控制器和装置在没有主机的应用中与彼此通信的车辆总线标准。它是最初是为汽车内的复用电气布线设计的基于消息的协议,但也用于许多其它环境。[0078] 现在参考图2,在一个实施方式中,传感器系统115包括但不限于一个或多个摄像机211、全球定位系统(GPS)单元212、惯性测量单元(IMU)213、雷达单元214以及光探测和测距(LIDAR)单元215。GPS单元212可包括收发器,所述收发器可操作以提供关于ADV的位置的信息。IMU单元213可基于惯性加速度来感测ADV的位置和定向变化。雷达单元214可表示利用无线电信号来感测ADV的本地环境内的对象的系统。在一些实施方式中,除感测对象之外,雷达单元214可另外感测对象的速度和/或前进方向。LIDAR单元215可使用激光来感测ADV所处环境中的对象。除其它系统部件之外,LIDAR单元215还可包括一个或多个激光源、激光扫描器以及一个或多个检测器。摄像机211可包括用来采集ADV周围环境的图像的一个或多个装置。摄像机211可以是静物摄像机和/或视频摄像机。摄像机可以是可机械地移动的,例如,通过将摄像机安装在旋转和/或倾斜平台上。[0079] 传感器系统115还可包括其它传感器,诸如:声纳传感器、红外传感器、转向传感器、油门传感器、制动传感器以及音频传感器(例如,麦克风)。音频传感器可配置成从ADV周围的环境中采集声音。转向传感器可配置成感测方向盘、车辆的车轮或其组合的转向角度。油门传感器和制动传感器分别感测车辆的油门位置和制动位置。在一些情形下,油门传感器和制动传感器可集成为集成式油门/制动传感器。[0080] 在一个实施方式中,车辆控制系统111包括但不限于转向单元201、油门单元202(也称为加速单元)和制动单元203。转向单元201用来调整车辆的方向或前进方向。油门单元202用来控制电动机或发动机的速度,电动机或发动机的速度进而控制车辆的速度和加速度。制动单元203通过提供摩擦使车辆的车轮或轮胎减速而使车辆减速。应注意,如图2所示的部件可以以硬件、软件或其组合实施。[0081] 返回参考图1,无线通信系统112允许ADV101与诸如装置、传感器、其它车辆等外部系统之间的通信。例如,无线通信系统112可以与一个或多个装置直接无线通信,或者经由通信网络进行无线通信,诸如,通过网络102与服务器103至104通信。无线通信系统112可使用任何蜂窝通信网络或无线局域网(WLAN),例如,使用WiFi,以与另一部件或系统通信。无线通信系统112可例如使用红外链路、蓝牙等与装置(例如,乘客的移动装置、显示装置、车辆101内的扬声器)直接通信。用户接口系统113可以是在车辆101内实施的外围装置的部分,包括例如键盘、触摸屏显示装置、麦克风和扬声器等。[0082] ADV101的功能中的一些或全部可由ADS110控制或管理,尤其当在自动驾驶模式下操作时。ADS110包括必要的硬件(例如,处理器、存储器、存储装置)和软件(例如,操作系统、规划和路线安排程序),以从传感器系统115、控制系统111、无线通信系统112和/或用户接口系统113接收信息,处理所接收的信息,规划从起始点到目的地点的路线或路径,随后基于规划和控制信息来驾驶车辆101。可替代地,ADS110可与车辆控制系统111集成在一起。[0083] 例如,作为乘客的用户可例如经由用户接口来指定行程的起始位置和目的地。ADS110获得行程相关数据。例如,ADS110可从MPOI服务器中获得位置和路线信息,所述MPOI服务器可以是服务器103至104的一部分。位置服务器提供位置服务,并且MPOI服务器提供地图服务和某些位置的POI。可替代地,此类位置和MPOI信息可本地高速缓存在ADS110的永久性存储装置中。[0084] 当ADV101沿着路线移动时,ADS110也可从交通信息系统或服务器(TIS)获得实时交通信息。应注意,服务器103至104可由第三方实体进行操作。可替代地,服务器103至104的功能可与ADS110集成在一起。基于实时交通信息、MPOI信息和位置信息以及由传感器系统115检测或感测的实时本地环境数据(例如,障碍物、对象、附近车辆),ADS110可规划最佳路线并且根据所规划的路线例如经由控制系统111来驾驶车辆101,以安全且高效到达指定目的地。[0085] 服务器103可以是数据分析系统,从而为各种客户执行数据分析服务。在一个实施方式中,数据分析系统103包括数据收集器121和机器学习引擎122。数据收集器121从各种车辆(ADV或由人类驾驶员驾驶的常规车辆)收集驾驶统计数据123。驾驶统计数据123包括指示所发出的驾驶指令(例如,油门、制动、转向指令)以及由车辆的传感器在不同的时间点捕捉到的车辆的响应(例如,速度、加速、减速、方向)的信息。驾驶统计数据123还可包括描述不同时间点下的驾驶环境的信息,例如,路线(包括起始位置和目的地位置)、MPOI、道路状况、天气状况等。[0086] 基于驾驶统计数据123,出于各种目的,机器学习引擎122生成或训练一组规则、算法和/或预测模型124。在一个实施方式中,算法124包括用来自动接通ADV处的应急灯的算法。然后算法124可上传到ADV上以在自动驾驶期间实时使用。[0087] 图3A和图3B是示出根据一个实施方式的与ADV一起使用的自动驾驶系统的示例的框图。系统300可实施为图1的ADV101的一部分,包括但不限于ADS110、控制系统111和传感器系统115。参考图3A至图3B,ADS110包括但不限于定位模块301、感知模块302、预测模块303、决策模块304、规划模块305、控制模块306、路线安排模块307、应急灯控制模块308。[0088] 模块301至308中的一些或全部可以以软件、硬件或其组合实施。例如,这些模块可安装在永久性存储装置352中、加载到存储器351中,并且由一个或多个处理器(未示出)执行。应注意,这些模块中的一些或全部可通信地联接到图2的车辆控制系统111的一些或全部模块或者与它们集成在一起。模块301至308中的一些可一起集成为集成模块。[0089] 定位模块301确定ADV300的当前位置(例如,利用GPS单元212)以及管理与用户的行程或路线相关的任何数据。定位模块301(又称作为地图与路线模块)管理与用户的行程或路线相关的任何数据。用户可例如经由用户接口登录并且指定行程的起始位置和目的地。定位模块301与ADV300的诸如地图与路线数据311的其它部件通信,以获得行程相关数据。例如,定位模块301可从位置服务器和地图与POI(MPOI)服务器获得位置和路线信息。位置服务器提供位置服务,并且MPOI服务器提供地图服务和某些位置的POI,从而可作为地图与路线数据311的一部分高速缓存。当ADV300沿着路线移动时,定位模块301也可从交通信息系统或服务器获得实时交通信息。[0090] 基于由传感器系统115提供的传感器数据和由定位模块301获得的定位信息,感知模块302确定对周围环境的感知。感知信息可表示普通驾驶员在驾驶员正驾驶的车辆周围将感知到的东西。感知可包括例如采用对象形式的车道配置、交通灯信号、另一车辆的相对位置、行人、建筑物、人行横道或其它交通相关标志(例如,停止标志、让行标志)等。车道配置包括描述一个或多个车道的信息,诸如,例如车道的形状(例如,直线或弯曲)、车道的宽度、道路中的车道数量、单向或双向车道、合并或分开车道、出口车道等。[0091] 感知模块302可包括计算机视觉系统或计算机视觉系统的功能,以处理并分析由一个或多个摄像机采集的图像,从而识别ADV环境中的对象和/或特征。所述对象可包括交通信号、道路边界、其它车辆、行人和/或障碍物等。计算机视觉系统可使用对象识别算法、视频跟踪以及其它计算机视觉技术。在一些实施方式中,计算机视觉系统可绘制环境地图,跟踪对象,以及估算对象的速度等。感知模块302也可基于由诸如雷达和/或LIDAR的其它传感器提供的其它传感器数据来检测对象。[0092] 针对每个对象,预测模块303预测对象在这种情况下将如何表现。预测是基于感知数据执行的,该感知数据在考虑一组地图/路线数据311和交通规则312的时间点感知驾驶环境。例如,如果对象为相反方向上的车辆且当前驾驶环境包括十字路口,则预测模块303将预测车辆是否可能会笔直向前移动或转弯。如果感知数据表明十字路口没有交通灯,则预测模块303可能会预测车辆在进入十字路口之前可能需要完全停车。如果感知数据表明车辆目前处于左转唯一车道或右转唯一车道,则预测模块303可能预测车辆将更可能分别左转或右转。[0093] 针对每个对象,决策模块304作出关于如何处置对象的决定。例如,针对特定对象(例如,交叉路线中的另一车辆)以及描述对象的元数据(例如,速度、方向、转弯角度),决策模块304决定如何与所述对象相遇(例如,超车、让行、停止、超过)。决策模块304可根据诸如交通规则或驾驶规则312的规则集来作出此类决定,所述规则集可存储在永久性存储装置352中。[0094] 路线安排模块307配置成提供从起始点到目的地点的一个或多个路线或路径。对于从起始位置到目的地位置的给定行程,例如从用户接收的给定行程,路线安排模块307获得路线与地图数据311,并确定从起始位置至到达目的地位置的所有可能路线或路径。路线安排模块307可生成地形图形式的参考线,它确定了从起始位置至到达目的地位置的每个路线。参考线是指不受其它诸如其它车辆、障碍物或交通状况的任何干扰的理想路线或路径。即,如果道路上没有其它车辆、行人或障碍物,则ADV应精确地或紧密地跟随参考线。然后,将地形图提供至决策模块304和/或规划模块305。决策模块304和/或规划模块305检查所有可能的路线,以根据由其它模块提供的其它数据选择和更改最佳路线中的一个,其中,其它数据诸如为来自定位模块301的交通状况、由感知模块302感知到的驾驶环境以及由预测模块303预测的交通状况。根据时间点下的特定驾驶环境,用于控制ADV的实际路径或路线可能接近于或不同于由路线安排模块307提供的参考线。[0095] 基于针对所感知到的对象中的每个的决定,规划模块305使用由路线安排模块307提供的参考线作为基础,为ADV规划路径或路线以及驾驶参数(例如,距离、速度和/或转弯角度)。换言之,针对给定的对象,决策模块304决定对该对象做什么,而规划模块305确定如何去做。例如,针对给定的对象,决策模块304可决定超过所述对象,而规划模块305可确定在所述对象的左侧还是右侧超过。规划和控制数据由规划模块305生成,包括描述车辆300在下一移动循环(例如,下一路线/路径段)中将如何移动的信息。例如,规划和控制数据可指示车辆300以30英里每小时(mph)的速度移动10米,随后以25mph的速度变到右侧车道。[0096] 基于规划和控制数据,控制模块306根据由规划和控制数据限定的路线或路径通过将适当的命令或信号发送到车辆控制系统111来控制并驾驶ADV。所述规划和控制数据包括足够的信息,以沿着路径或路线在不同的时间点使用适当的车辆设置或驾驶参数(例如,油门、制动、转向命令)将车辆从路线或路径的第一点驾驶到第二点。[0097] 在一个实施方式中,规划阶段在多个规划周期(也称作为驾驶周期)中执行,例如,在每个时间间隔为100毫秒(ms)的周期中执行。对于规划周期或驾驶周期中的每一个,将基于规划和控制数据发出一个或多个控制命令。即,对于每100ms,规划模块305规划下一个路线段或路径段,例如,包括目标位置和ADV到达目标位置所需要的时间。可替代地,规划模块305还可规定具体的速度、方向和/或转向角等。在一个实施方式中,规划模块305为下一个预定时段(诸如,5秒)规划路线段或路径段。对于每个规划周期,规划模块305基于在前一周期中规划的目标位置规划用于当前周期(例如,下一个5秒)的目标位置。控制模块306然后基于当前周期的规划和控制数据生成一个或多个控制命令(例如,油门、制动、转向控制命令)。[0098] 应注意,决策模块304和规划模块305可集成为集成模块。决策模块304/规划模块305可包括导航系统或导航系统的功能,以确定ADV的驾驶路径。例如,导航系统可确定用于影响ADV沿着以下路径移动的一系列速度和前进方向:所述路径在使ADV沿着通往最终目的地的基于车行道的路径前进的同时,基本上避免感知到的障碍物。目的地可根据经由用户接口系统113进行的用户输入来设定。导航系统可在ADV正在运行的同时动态地更新驾驶路径。导航系统可将来自GPS系统和一个或多个地图的数据合并,以确定用于ADV的驾驶路径。[0099] 参照图4,示出了框图400,其示出了根据一个实施方式的可用于确定是否自动接通自动驾驶车辆(ADV)处的应急灯的各种示例性模块。图4所示的各种模块可以用硬件、软件或其组合来实现。在速度确定模块401,确定自动驾驶车辆(ADV)在第一时刻的当前速度。在减速度确定模块402,确定ADV在第一时刻的当前减速度。[0100] 在第一条件确定模块403,确定当前速度是否满足第一时刻的当前速度条件以及当前减速度是否满足第一时刻的当前减速度条件。在第二条件确定模块404,响应于确定当前速度满足当前速度条件并且当前减速度满足当前减速度条件,相对于第一时刻,确定ADV的最近减速度历史是否满足最近减速度历史条件并且ADV的预期减速度是否满足预期减速度条件。在应急灯控制模块308处,响应于相对于第一时刻确定最近减速度历史满足最近减速度历史条件或者预期减速度满足预期减速度条件,自动接通ADV的应急灯405。[0101] 在一个实施方式中,当当前速度高于第一速度阈值(例如,10m/s)时,当前速度满2足当前速度条件。在一个实施方式中,当当前减速度高于第一减速度阈值(例如,2m/s)时,当前减速度满足当前减速度条件。[0102] 在一个实施方式中,当自第一时刻以来,ADV已经以高于第一平均减速度阈值(例2如,2m/s)的第一平均减速度减慢了高于第一速度差阈值(例如,15m/s)的第一速度差,或2者已经以高于第二平均减速度阈值(例如,3m/s )的第二平均减速度减慢了高于第二速度2差阈值(例如,2m/s)的第二速度差(例如,10m/s)时,最近减速度历史满足最近减速度历史条件。特别地,第一速度差阈值(例如,15m/s)高于第二速度差阈值(例如,10m/s),并且第一2 2平均减速度阈值(例如,2m/s)低于第二平均减速度阈值(例如,3m/s)。[0103] 在一个实施方式中,为了确定预期减速度是否满足预期减速度条件,基于ADV的当前速度、直接位于ADV前方的前车的当前速度以及前车与ADV之间的距离来确定碰撞时间。特别地,在一个实施方式中,碰撞时间可以基于以下公式来确定:碰撞时间=前车与ADV之间的距离/(ADV的当前速度‑前车的当前速度)。确定碰撞时间是否低于碰撞时间阈值(例如,8s)。响应于确定碰撞时间不低于碰撞时间阈值(例如,8s),将预期减速度确定为不满足预期减速度条件。[0104] 另一方面,如果碰撞时间低于碰撞时间阈值(例如,8s),则基于ADV的当前速度、前车的当前速度以及前车与ADV之间的距离来确定预期减速度。特别地,在一个实施方式中,预期减速度可以基于以下公式来确定:预期减速度=(ADV的当前速度‑前车的当前速度)^22/(2*前车与ADV之间的距离)。确定预期减速度是否高于第二减速度阈值(例如2m/s)。响2应于确定预期减速度高于第二减速度阈值(例如2m/s),将预期减速度确定为满足预期减2速度条件。另一方面,响应于确定预期减速度不高于第二减速度阈值(例如2m/s),将预期减速度确定为不满足预期减速度条件。[0105] 在一个实施方式中,在打开应急灯之后,应急灯被保持开启,直到它响应于用户操作而被关闭。在一个实施方式中,紧急灯在接通时呈现闪光图案。[0106] 应当理解,本文提供的参数和阈值的各种值是示例性的,并且仅用于说明的目的。在不同的实施方式中,可以改变或调整上述值,而不偏离本公开的范围。[0107] 还应当理解,在本文中,减速度值等于其加法反元的加速度值。例如,2m/s2的减速2度等同于‑2m/s的加速度。此外,高于减速度阈值的减速度等同于低于相应的加速阈值的2 2加速度,反之亦然。例如,高于减速度阈值2m/s的减速度等同于低于加速度阈值‑2m/s 的加速度。所选择的表示不改变所描述的材料的实质。[0108] 参照图5,示出了示出根据一个实施方式的用于确定是否自动接通自动驾驶车辆(ADV)处的应急灯的示例性方法500的流程图。过程500可以用硬件、软件或其组合来实现。在框501,确定自动驾驶车辆(ADV)在第一时刻的当前速度。在框502,确定ADV在第一时刻的当前减速度。在框503,确定当前速度是否满足第一时刻的当前速度条件以及当前减速度是否满足第一时刻的当前减速度条件。在框504,响应于确定当前速度满足当前速度条件并且当前减速度满足当前减速度条件,相对于第一时刻,确定ADV的最近减速度历史是否满足最近减速度历史条件以及ADV的预期减速度是否满足预期减速度条件。在框505,响应于相对于第一时刻确定最近减速度历史满足最近减速度历史条件或者预期减速度满足预期减速度条件,自动接通ADV的应急灯。[0109] 因此,本公开的实施方式涉及一种用于在应用强制制动时自动接通ADV的应急灯的方法。一些实施方式可以与L3或以上的ADV一起使用。因此,可以在不需要驾驶员的手动干预的情况下迅速警告后面的车辆。[0110] 应注意,如上文示出和描述的部件中的一些或全部可在软件、硬件或其组合中实施。例如,此类部件可实施为安装并存储在永久性存储装置中的软件,所述软件可通过处理器(未示出)加载在存储器中并在存储器中执行以实施贯穿本申请所述的过程或操作。可替代地,此类部件可实施为编程或嵌入到专用硬件(诸如,集成电路(例如,专用集成电路或ASIC)、数字信号处理器(DSP)或现场可编程门阵列(FPGA))中的可执行代码,所述可执行代码可经由来自应用的相应驱动程序和/或操作系统来访问。此外,此类部件可实施为处理器或处理器内核中的特定硬件逻辑,作为可由软件部件通过一个或多个特定指令访问的指令集的一部分。[0111] 这些计算程序(也称作程序、软件、软件应用、或者代码)包括可编程处理器的机器指令,并且可以利用高级过程和/或面向对象的编程语言、和/或汇编/机器语言来实施这些计算程序。如本文使用的,术语“机器可读介质”和“计算机可读介质”指的是用于将机器指令和/或数据提供给可编程处理器的任何计算机程序产品、设备、和/或装置(例如,磁盘、光盘、存储器、可编程逻辑装置(PLD)),包括,接收作为机器可读信号的机器指令的机器可读介质。术语“机器可读信号”指的是用于将机器指令和/或数据提供给可编程处理器的任何信号。[0112] 前述详细描述中的一些部分已经根据在计算机存储器内对数据位的运算的算法和符号表示而呈现。这些算法描述和表示是数据处理领域中的技术人员所使用的方式,以将他们的工作实质最有效地传达给本领域中的其他技术人员。本文中,算法通常被认为是导致所期望结果的自洽操作序列。这些操作是指需要对物理量进行物理操控的操作。[0113] 然而,应当牢记,所有这些和类似的术语均旨在与适当的物理量关联,并且仅仅是应用于这些量的方便标记。除非在以上讨论中以其它方式明确地指出,否则应当了解,在整个说明书中,利用术语(诸如所附权利要求书中所阐述的术语)进行的讨论是指计算机系统或类似电子计算装置的动作和处理,所述计算机系统或电子计算装置操控计算机系统的寄存器和存储器内的表示为物理(电子)量的数据,并将所述数据变换成计算机系统存储器或寄存器或者其它此类信息存储装置、传输或显示装置内类似地表示为物理量的其它数据。[0114] 本公开的实施方式还涉及用于执行本文中的操作的设备。这种计算机程序存储在非暂时性计算机可读介质中。机器可读介质包括用于以机器(例如,计算机)可读的形式存储信息的任何机构。例如,机器可读(例如,计算机可读)介质包括机器(例如,计算机)可读存储介质(例如,只读存储器(“ROM”)、随机存取存储器(“RAM”)、磁盘存储介质、光存储介质、闪存存储器装置)。[0115] 前述附图中所描绘的过程或方法可由处理逻辑来执行,所述处理逻辑包括硬件(例如,电路、专用逻辑等)、软件(例如,体现在非暂时性计算机可读介质上)或两者的组合。尽管所述过程或方法在上文是依据一些顺序操作来描述的,但是应当了解,所述操作中的一些可按不同的顺序执行。此外,一些操作可并行地执行而不是顺序地执行。[0116] 本公开的实施方式并未参考任何特定的编程语言进行描述。应认识到,可使用多种编程语言来实施如本文描述的本公开的实施方式的教导。[0117] 在以上的说明书中,已经参考本公开的具体示例性实施方式对本公开的实施方式进行了描述。将显而易见的是,在不脱离所附权利要求书中阐述的本公开的更宽泛精神和范围的情况下,可对本发明作出各种修改。因此,应当在说明性意义而不是限制性意义上来理解本说明书和附图。
专利地区:美国
专利申请日期:2020-12-17
专利公开日期:2024-06-18
专利公告号:CN113815525B