可左右滑动选省市

生产流水线中的异常环节定位方法、装置及电子设备

更新时间:2025-06-01
生产流水线中的异常环节定位方法、装置及电子设备 专利申请类型:实用新型专利;
源自:北京高价值专利检索信息库;

专利名称:生产流水线中的异常环节定位方法、装置及电子设备

专利类型:实用新型专利

专利申请号:CN202011473643.X

专利申请(专利权)人:第四范式(北京)技术有限公司
权利人地址:北京市海淀区清河中街66号院1号楼九层LO901-1号

专利发明(设计)人:温少扬,张青,宋建华,周振华

专利摘要:本公开实施例公开了一种生产流水线中的异常环节定位方法、装置及电子设备,该方法包括:获取产品集合中的各个产品在生产流水线上的生产流转数据以及各产品是否为良品的标签;构建所述生产流水线的流转网络,其中,一个产品的生产流转数据对应所述流程网络中的一条流转路径;根据各产品是否为良品的标签,统计所述流转网络中的各流转路径对应的良品率;根据所述流转网络中的各流转路径和各流转路径对应的良品率,对所述生产流水线中的异常环节进行定位。

主权利要求:
1.一种生产流水线中的异常环节定位方法,包括:获取产品集合中的各个产品在生产流水线上的生产流转数据以及各产品是否为良品的标签;
构建所述生产流水线的流转网络,其中,一个产品的生产流转数据对应所述流转网络中的一条流转路径;
根据各产品是否为良品的标签,统计所述流转网络中的各流转路径对应的良品率;
根据所述流转网络中的各流转路径和各流转路径对应的良品率,对所述生产流水线中的异常环节进行定位,其中,所述生产流转数据包括:生产产品的物料的批次信息、物料所经过生产流水线各道工序的设备的标识信息,所述构建所述生产流水线的流转网络,包括:
根据生产产品的物料的批次信息以及所述生产流水线的各道工序的设备的标志信息,获得生产产品的物料及各道工序间的流转关系和流转方向;
以所述产品集合所涉及的所有物料的批次信息以及所述生产流水线的各道工序的设备的标志信息为节点,以节点与节点间的流转关系为边,以流转方向为边的方向,构建流转网络。
2.根据权利要求1所述的方法,其中,所述根据各产品是否为良品的标签,统计所述流转网络中的各流转路径对应的良品率,包括:获取所述流转网络中的每条流转路径上的产品的第一总数量;
获取每条所述流转路径上的标签为良品的产品的第二总数量;
根据每条所述流转路径对应的所述第一总数量和所述第二总数量,获得每条所述流转路径上的良品率。
3.根据权利要求1所述的方法,其中,每条所述流转路径上包括生产产品的物料的批次信息节点、及物料所经过生产流水线各道工序的设备的标识信息节点,所述根据所述流转网络中的各流转路径对应的良品率,对所述生产流水线中的异常环节进行定位,包括:以所述流转网络中的每条流转路径上的各个节点的合格率为未知参数,以所述流转路径对应的良品率为已知参数,构建概率模型方程组;
求解所述概率模型方程组,获得所述流转网络中各个节点的合格率;
根据所述流转网络中各个节点的合格率,对所述生产流水线中的异常环节进行定位。
4.根据权利要求3所述的方法,其中,所述求解所述概率模型方程组,获得所述流转网络中各个节点的合格率,包括:获取目标优化算法,其中,所述目标优化算法包括二次规划求解算法、粒子群算法和遗传算法中的至少一种算法;
根据所述目标优化算法和设定的约束条件,求解所述概率模型方程组,获得所述流转网络中各个节点的合格率;
其中,所述设定的约束条件包括关于所述流转网络中各个节点的合格率的约束。
5.根据权利要求4所述的方法,其中,关于所述流转网络中各个节点的合格率的约束为:各个所述节点的合格率的取值为0到1之间的自然数。
6.根据权利要求3所述的方法,其中,所述根据所述流转网络中各个节点的合格率,对所述生产流水线中的异常环节进行定位,包括:根据所述流转网络中各个节点的合格率,获得各个所述节点的异常率;
根据各个所述节点的异常率,对所述生产流水线中的异常环节进行定位。
7.根据权利要求6所述的方法,其中,所述根据各个所述节点的异常率,对所述生产流水线中的异常环节进行定位,包括:针对于每一所述节点,获取预先设定的异常率;
将每一所述节点的异常率和对应的所述设定的异常率进行比较;
在所述节点的异常率大于设定的异常率的情况下,确定所述节点为异常节点。
8.根据权利要求6所述的方法,其中,所述根据各个所述节点的异常率,对所述生产流水线中的异常环节进行定位,还包括:将各个所述节点的异常率按照从大到小的顺序进行排序;
获取前预定数量的异常率对应的节点,作为异常节点。
9.根据权利要求4所述的方法,其中,所述概率模型方程组中还包括对应每条流转路径的权重;
所述方法还包括:
获取所述流转网络中的每条流转路径上的产品的第一总数量;
根据所述第一总数量,调整所述概率模型方程组中对应所述流转路径的权重;
基于调整后的权重,根据所述目标优化算法和设定的约束条件,求解所述概率模型方程组,获得所述流转网络中各个节点的合格率。
10.根据权利要求1所述的方法,其中,所述方法还包括:在所述流转网络中的任一流转路径对应的良品率低于设定的良品率阈值的情况下,将所述任一流转路径上的良品率进行调整;
根据所述流转网络中的各流转路径和调整后的各流转路径对应的良品率,对所述生产流水线中的异常环节进行定位。
11.根据权利要求1所述的方法,其中,所述方法还包括:在所述流转网络中的任一节点满足设定的滤除条件的情况下,从所述流转网络中删除所述任一节点以调整所述流转网络中的流转路径;
基于所述调整后的流转网络中的各流转路径和各流转路径对应的良品率,对所述生产流水线中的异常环节进行定位。
12.根据权利要求1所述的方法,其中,所述方法还包括:在任一工序的设备数量超过设定的设备数量阈值的情况下,将所述任一工序的多个设备进行合并处理;
以所述产品集合所涉及的所有物料的批次信息、及所述生产流水线的各道工序的进行所述合并处理后的设备的标志信息为节点,以节点与节点间的流转关系为边,以流转方向为边的方向,重新构建流转网络。
13.根据权利要求1所述的方法,其中,所述方法还包括:切分所述流转网络,获得多个子流转网络,以根据所述多个子流转网络中的各流转路径对应的良品率,对所述生产流水线中的异常环节进行定位。
14.根据权利要求1所述的方法,其中,所述方法还包括:响应于获取挖掘流转网络的挖掘结果的请求,获取设定的显示模式;
按照所述显示模式显示构建的所述流转网络。
15.根据权利要求1所述的方法,其中,所述获取产品集合中的各个产品的生产流转线上的生产流转数据以及各产品是否为良品的标签,包括:通过获取接口向产品数据系统发送获取产品集合中的各个产品在生产流水线上的生产流转数据以及各产品是否为良品的标签的请求;其中,所述请求中至少携带所述产品集合的标识信息和各个产品的标识信息中的任意一种;
接收所述产品数据系统响应于所述请求返回的各个产品的生产流转数据以及各产品是否为良品的标签。
16.一种生产流水线中的异常环节定位装置,包括:获取模块,用于获取产品集合中的各个产品在生产流水线上的生产流转数据以及各产品是否为良品的标签;
构建模块,用于构建所述生产流水线的流转网络,其中,一个产品的生产流转数据对应所述流转网络中的一条流转路径;
统计模块,用于根据各产品是否为良品的标签,统计所述流转网络中的各流转路径对应的良品率;
定位模块,用于根据所述流转网络中的各流转路径和各流转路径对应的良品率,对所述生产流水线中的异常环节进行定位,其中,所述生产流转数据包括:生产产品的物料的批次信息、物料所经过生产流水线各道工序的设备的标识信息,所述构建模块,具体用于:
根据生产产品的物料的批次信息以及所述生产流水线的各道工序的设备的标志信息,获得生产产品的物料及各道工序间的流转关系和流转方向;
以所述产品集合所涉及的所有物料的批次信息以及所述生产流水线的各道工序的设备的标志信息为节点,以节点与节点间的流转关系为边,以流转方向为边的方向,构建流转网络。
17.根据权利要求16所述的装置,其中,所述统计模块,具体用于:获取所述流转网络中的每条流转路径上的产品的第一总数量;
获取每条所述流转路径上的标签为良品的产品的第二总数量;
根据每条所述流转路径对应的所述第一总数量和所述第二总数量,获得每条所述流转路径上的良品率。
18.根据权利要求16所述的装置,其中,每条所述流转路径上包括生产产品的物料的批次信息节点、及物料所经过生产流水线各道工序的设备的标识信息节点,所述定位模块,具体用于:以所述流转网络中的每条流转路径上的各个节点的合格率为未知参数,以所述流转路径对应的良品率为已知参数,构建概率模型方程组;
求解所述概率模型方程组,获得所述流转网络中各个节点的合格率;
根据所述流转网络中各个节点的合格率,对所述生产流水线中的异常环节进行定位。
19.根据权利要求18所述的装置,其中,所述定位模块,具体用于:获取目标优化算法,其中,所述目标优化算法至少包括二次规划求解算法、粒子群算法和遗传算法中的至少一种算法;
根据所述目标优化算法和设定的约束条件,求解所述概率模型方程组,获得所述流转网络中各个节点的合格率;
其中,所述设定的约束条件包括关于所述流转网络中各个节点的合格率的约束。
20.根据权利要求19所述的装置,其中,关于所述流转网络中各个节点的合格率的约束为:各个所述节点的合格率的取值为0到1之间的自然数。
21.根据权利要求18所述的装置,其中,所述定位模块,具体用于:根据所述流转网络中各个节点的合格率,获得各个所述节点的异常率;
根据各个所述节点的异常率,对所述生产流水线中的异常环节进行定位。
22.根据权利要求21所述的装置,其中,所述定位模块,具体用于:针对于每一所述节点,获取预先设定的异常率;
将每一所述节点的异常率和对应的所述设定的异常率进行比较;
在所述节点的异常率大于设定的异常率的情况下,确定所述节点为异常节点。
23.根据权利要求21所述的装置,其中,所述定位模块,具体用于:将各个所述节点的异常率按照从大到小的顺序进行排序;
获取前预定数量的异常率对应的节点,作为异常节点。
24.根据权利要求19所述的装置,其中,所述概率模型方程组中还包括对应每条流转路径的权重;所述定位模块,还用于:获取所述流转网络中的每条流转路径上的产品的第一总数量;
根据所述第一总数量,调整所述概率模型方程组中对应所述流转路径的权重;
基于调整后的权重,根据所述目标优化算法和设定的约束条件,求解所述概率模型方程组,获得所述流转网络中各个节点的合格率。
25.根据权利要求16所述的装置,其中,所述定位模块,还用于:在所述流转网络中的任一流转路径对应的良品率低于设定的良品率阈值的情况下,将所述任一流转路径上的良品率进行调整;
根据所述流转网络中的各流转路径和调整后的各流转路径对应的良品率,对所述生产流水线中的异常环节进行定位。
26.根据权利要求16所述的装置,其中,所述定位模块,还用于:在所述流转网络中的任一节点满足设定的滤除条件的情况下,从所述流转网络中删除所述任一节点以调整所述流转网络中的流转路径;
基于所述调整后的流转网络中的各流转路径和各流转路径对应的良品率,对所述生产流水线中的异常环节进行定位。
27.根据权利要求16所述的装置,其中,所述构建模块,还用于:在任一工序的设备数量超过设定的设备数量阈值的情况下,将所述任一工序的多个设备进行合并处理;
以所述产品集合所涉及的所有物料的批次信息、及所述生产流水线的各道工序的进行所述合并处理后的设备的标志信息为节点,以节点与节点间的流转关系为边,以流转方向为边的方向,重新构建流转网络。
28.根据权利要求16所述的装置,其中,所述定位模块,还用于:切分所述流转网络,获得多个子流转网络,以根据所述多个子流转网络中的各流转路径对应的良品率,对所述生产流水线中的异常环节进行定位。
29.根据权利要求16所述的装置,其中,所述装置还包括显示模块,所述显示模块,用于:响应于获取挖掘流转网络的挖掘结果的请求,获取设定的显示模式;
按照所述显示模式显示构建的所述流转网络。
30.根据权利要求16所述的装置,其中,所述获取模块,具体用于:通过获取接口向产品数据系统发送获取产品集合中的各个产品在生产流水线上的生产流转数据以及各产品是否为良品的标签的请求;其中,所述请求中至少携带所述产品集合的标识信息和各个产品的标识信息中的任意一种;
接收所述产品数据系统响应于所述请求返回的各个产品的生产流转数据以及各产品是否为良品的标签。
31.一种包括至少一个计算装置和至少一个存储装置的设备,其中,所述至少一个存储装置用于存储指令,所述指令在被所述至少一个计算装置执行时实现根据权利要求1至15中任一项所述的方法。
32.一种计算机可读存储介质,其中,其上存储有计算机程序,所述计算机程序在被处理器执行时实现如权利要求1至15中任一项所述的方法。 说明书 : 生产流水线中的异常环节定位方法、装置及电子设备技术领域[0001] 本发明涉及加工制造领域,更具体地,涉及一种生产流水线中的异常环节定位方法、一种生产流水线中的异常环节定位装置、一种电子设备、及一种计算机可读存储介质。背景技术[0002] 制造业流水线生产过程中,由于每个产品从原料开始通常需要经过多道生产加工工序,最后变成产品,在此,原料或者生产设备出现异常都有可能会影响到最终产品的良品率,给生产方带来比较大的损失。[0003] 现有技术中,当出现异常之后,生产方往往只能看到最后的产品良品率有异常,很多时候由于生产工艺流程复杂,定位具体是哪个生产环节出现问题导致的异常是一件非常困难的事情,目前很多时候需要依靠工程师的经验,人工实地的去排查,很难精准定位,导致排查时间会比较长,影响生产。发明内容[0004] 本公开实施例的一个目的是提供一种生产流水线中的异常环节定位的新的技术方案。[0005] 根据本公开的第一方面,提供一种生产流水线中的异常环节定位方法,其包括:[0006] 获取产品集合中的各个产品在生产流水线上的生产流转数据以及各产品是否为良品的标签;[0007] 构建所述生产流水线的流转网络,其中,一个产品的生产流转数据对应所述流程网络中的一条流转路径;[0008] 根据各产品是否为良品的标签,统计所述流转网络中的各流转路径对应的良品率;[0009] 根据所述流转网络中的各流转路径和各流转路径对应的良品率,对所述生产流水线中的异常环节进行定位。[0010] 可选地,所述生产流转数据包括:生产产品的物料的批次信息、物料所经过生产流水线各道工序的设备的标识信息。[0011] 可选地,所述构建所述生产流水线的流转网络,包括:[0012] 根据生产产品的物料的批次信息以及所述生产流水线的各道工序的设备的标志信息,获得生产产品的物料及各道工序间的流转关系和流转方向;[0013] 以所述产品集合所涉及的所有物料的批次信息以及所述生产流水线的各道工序的设备的标志信息为节点,以节点与节点间的流转关系为边,以流转方向为边的方向,构建流转网络。[0014] 可选地,所述根据各产品是否为良品的标签,统计所述流转网络中的各流转路径对应的良品率,包括:[0015] 获取所述流转网络中的每条流转路径上的产品的第一总数量;[0016] 获取每条所述流转路径上的标签为良品的产品的第二总数量;[0017] 根据每条所述流转路径对应的所述第一总数量和所述第二总数量,获得每条所述流转路径上的良品率。[0018] 可选地,每条所述流转路径上包括生产产品的物料的批次信息节点、及物料所经过生产流水线各道工序的设备的标识信息节点,[0019] 所述根据所述流转网络中的各流转路径对应的良品率,对所述生产流水线中的异常环节进行定位,包括:[0020] 以所述流转网络中的每条流转路径上的各个节点的合格率为未知参数,以所述流转路径对应的良品率为已知参数,构建概率模型方程组;[0021] 求解所述概率模型方程组,获得所述流转网络中各个节点的合格率;[0022] 根据所述流转网络中各个节点的合格率,对所述生产流水线中的异常环节进行定位。[0023] 可选地,所述求解所述概率方程组,获得所述流转网络中各个节点的合格率,包括:[0024] 获取目标优化算法,其中,所述目标优化算法至少包括二次规划求解算法、粒子群算法和遗传算法中的至少一种算法;[0025] 根据所述目标优化算法和设定的约束条件,求解所述概率模型方程组,获得所述流转网络中各个节点的合格率;[0026] 其中,所述设定的约束条件包括关于所述流转网络中各个节点的合格率的约束。[0027] 可选地,关于所述流转网络中各个节点的合格率的约束为:各个所述节点的合格率的取值为0到1之间的自然数。[0028] 可选地,所述根据所述流转网络中各个节点的合格率,对所述生产流水线中的异常环节进行定位,包括:[0029] 根据所述流转网络中各个节点的合格率,获得各个所述节点的异常率;[0030] 根据各个所述节点的异常率,对所述生产流水线中的异常环节进行定位。[0031] 可选地,所述根据各个所述节点的异常率,对所述生产流水线中的异常环节进行定位,包括:[0032] 针对于每一所述节点,获取预先设定的异常率;[0033] 将每一所述节点的异常率和对应的所述设定的异常率进行比较;[0034] 在所述节点的异常率大于设定的异常率的情况下,确定所述节点为异常节点。[0035] 可选地,所述根据各个所述节点的异常率,对所述生产流水线中的异常环节进行定位,还包括:[0036] 将各个所述节点的异常率按照从大到小的顺序进行排序;[0037] 获取前预定数量的异常率对应的节点,作为异常节点。[0038] 可选地,所述概率模型方程组中还包括对应每条流转路径的权重;[0039] 所述方法还包括:[0040] 获取所述流转网络中的每条流转路径上的产品的第一总数量;[0041] 根据所述第一总数量,调整所述概率模型方程组中对应所述流转路径的权重;[0042] 基于调整后的权重,根据所述目标优化算法和设定的约束条件,求解所述概率模型方程组,获得所述流转网络中各个节点的合格率。[0043] 可选地,所述方法还包括:[0044] 在所述流转网络中的任一流转路径对应的良品率低于设定的良品率阈值的情况下,将所述任一流转路径上的良品率进行调整;[0045] 根据所述流转网络中的各流转路径和调整后的各流转路径对应的良品率,对所述生产流水线中的异常环节进行定位。[0046] 可选地,所述方法还包括:[0047] 在所述流转网络中的任一节点满足设定的滤除条件的情况下,从所述流转网络中删除所述任一节点以调整所述流转网络中的流转路径;[0048] 基于所述调整后的流转网络中的各流转路径和各流转路径对应的良品率,对所述生产流水线中的异常环节进行定位。[0049] 可选地,所述方法还包括:[0050] 在任一工序的设备数量超过设定的设备数量阈值的情况下,将所述任一工序的多个设备进行合并处理;[0051] 以所述产品集合所涉及的所有物料的批次信息、及所述生产流水线的各道工序的进行所述合并处理后的设备的标志信息为节点,以节点与节点间的流转关系为边,以流转方向为边的方向,重新构建流转网络。[0052] 可选地,所述方法还包括:[0053] 切分所述流转网络,获得多个子流转网络,以根据所述多个子流转网络中的各流转路径对应的良品率,对所述生产流水线中的异常环节进行定位。[0054] 可选地,所述方法还包括:[0055] 响应于获取挖掘流转网络的挖掘结果的请求,获取设定的显示模式;[0056] 按照所述显示模式显示构建的所述流转网络。[0057] 可选地,所述获取产品集合中的各个产品的生产流转线上的生产流转数据以及各产品是否为良品的标签,包括:[0058] 通过获取接口向产品数据系统发送获取产品集合中的各个产品在生产流水线上的生产流转数据以及各产品是否为良品的标签的请求;其中,所述请求中至少携带所述产品集合的标识信息和各个产品的标识信息中的任意一种;[0059] 接收所述产品数据系统响应于所述请求返回的各个产品的生产流转数据以及各产品是否为良品的标签。[0060] 根据本公开的第二方面,还提供一种生产流水线的异常环节定位装置,其包括:[0061] 获取模块,用于获取产品集合中的各个产品在生产流水线上的生产流转数据以及各产品是否为良品的标签;[0062] 构建模块,用于构建所述生产流水线的流转网络,其中,一个产品的生产流转数据对应所述流程网络中的一条流转路径;[0063] 统计模块,用于根据各产品是否为良品的标签,统计所述流转网络中的各流转路径对应的良品率;[0064] 定位模块,用于根据所述流转网络中的各流转路径和各流转路径对应的良品率,对所述生产流水线中的异常环节进行定位。[0065] 可选地,所述生产流转数据包括:生产产品的物料的批次信息、物料所经过生产流水线各道工序的设备的标识信息。[0066] 可选地,所述构建模块,具体用于:[0067] 根据生产产品的物料的批次信息以及所述生产流水线的各道工序的设备的标志信息,获得生产产品的物料及各道工序间的流转关系和流转方向;[0068] 以所述产品集合所涉及的所有物料的批次信息以及所述生产流水线的各道工序的设备的标志信息为节点,以节点与节点间的流转关系为边,以流转方向为边的方向,构建流转网络。[0069] 可选地,所述统计模块,具体用于:[0070] 获取所述流转网络中的每条流转路径上的产品的第一总数量;[0071] 获取每条所述流转路径上的标签为良品的产品的第二总数量;[0072] 根据每条所述流转路径对应的所述第一总数量和所述第二总数量,获得每条所述流转路径上的良品率。[0073] 可选地,每条所述流转路径上包括生产产品的物料的批次信息节点、及物料所经过生产流水线各道工序的设备的标识信息节点,所述定位模块,具体用于:[0074] 以所述流转网络中的每条流转路径上的各个节点的合格率为未知参数,以所述流转路径对应的良品率为已知参数,构建概率模型方程组;[0075] 求解所述概率模型方程组,获得所述流转网络中各个节点的合格率;[0076] 根据所述流转网络中各个节点的合格率,对所述生产流水线中的异常环节进行定位。[0077] 可选地,所述定位模块,具体用于:[0078] 获取目标优化算法,其中,所述目标优化算法至少包括二次规划求解算法、粒子群算法和遗传算法中的至少一种算法;[0079] 根据所述目标优化算法和设定的约束条件,求解所述概率模型方程组,获得所所述流转网络中各个节点的合格率;[0080] 其中,所述设定的约束条件包括关于所述流转网络中各个节点的合格率的约束。[0081] 可选地,关于所述流转网络中各个节点的合格率的约束为:各个所述节点的合格率的取值为0到1之间的自然数。[0082] 可选地,所述定位模块,具体用于:[0083] 根据所述流转网络中各个节点的合格率,获得各个所述节点的异常率;[0084] 根据各个所述节点的异常率,对所述生产流水线中的异常环节进行定位。[0085] 可选地,所述定位模块,具体用于:[0086] 针对于每一所述节点,获取预先设定的异常率;[0087] 将每一所述节点的异常率和对应的所述设定的异常率进行比较;[0088] 在所述节点的异常率大于设定的异常率的情况下,确定所述节点为异常节点。[0089] 可选地,所述定位模块,具体用于:[0090] 将各个所述节点的异常率按照从大到小的顺序进行排序;[0091] 获取前预定数量的异常率对应的节点,作为异常节点。[0092] 可选地,所述概率模型方程组中还包括对应每条流转路径的权重;所述定位模块,还用于:[0093] 获取所述流转网络中的每条流转路径上的产品的第一总数量;[0094] 根据所述第一总数量,调整所述概率模型方程组中对应所述流转路径的权重;[0095] 基于调整后的权重,根据所述目标优化算法和设定的约束条件,求解所述概率模型方程组,获得所述流转网络中各个节点的合格率。[0096] 可选地,所述定位模块,还用于:[0097] 在所述流转网络中的任一流转路径对应的良品率低于设定的良品率阈值的情况下,将所述任一流转路径上的良品率进行调整;[0098] 根据所述流转网络中的各流转路径和调整后的各流转路径对应的良品率,对所述生产流水线中的异常环节进行定位。[0099] 可选地,所述定位模块,还用于:[0100] 在所述流转网络中的任一节点满足设定的滤除条件的情况下,从所述流转网络中删除所述任一节点以调整所述流转网络中的流转路径;[0101] 基于所述调整后的流转网络中的各流转路径和各流转路径对应的良品率,对所述生产流水线中的异常环节进行定位。[0102] 可选地,构建模块,还用于:[0103] 在任一工序的设备数量超过设定的设备数量阈值的情况下,将所述任一工序的多个设备进行合并处理;[0104] 以所述产品集合所涉及的所有物料的批次信息、及所述生产流水线的各道工序的进行所述合并处理后的设备的标志信息为节点,以节点与节点间的流转关系为边,以流转方向为边的方向,重新构建流转网络。[0105] 可选地,所述定位模块,还用于:[0106] 切分所述流转网络,获得多个子流转网络,以根据所述多个子流转网络中的各流转路径对应的良品率,对所述生产流水线中的异常环节进行定位。[0107] 可选地,所述装置还包括显示模块,所述显示模块,用于:[0108] 响应于获取挖掘流转网络的挖掘结果的请求,获取设定的显示模式;[0109] 按照所述显示模式显示构建的所述流转网络。[0110] 可选地,所述获取模块,具体用于:[0111] 通过获取接口向产品数据系统发送获取产品集合中的各个产品在生产流水线上的生产流转数据以及各产品是否为良品的标签的请求;其中,所述请求中至少携带所述产品集合的标识信息和各个产品的标识信息中的任意一种;[0112] 接收所述产品数据系统响应于所述请求返回的各个产品的生产流转数据以及各产品是否为良品的标签。[0113] 根据本公开的第三方面,还提供一种包括至少一个计算装置和至少一个存储装置的设备,其中,所述至少一个存储装置用于存储指令,所述指令用于控制所述至少一个计算装置执行根据以上第一方面所述的方法。[0114] 根据本公开的第四方面,还提供一种计算机可读存储介质,其中,其上存储有计算机程序,所述计算机程序在被处理器执行时实现如以上第一方面所述的方法。[0115] 本公开的一个有益效果在于,根据本公开实施例的方法,其能够将一个产品的生产流转数据与所构建的生产流水线的流转网络的一条流转路径对应,同时,根据各产品是否为良品的标签,来统计出流转网络中的各流转路径对应的良品率,进而根据流转网络中的各流转路径和各流转路径对应的良品率,对生产流水线中的异常环节进行定位,即,本公开实施例利用产品生产过程中在各道工序间的生产流转数据,对生产过程中的异常环节进行了快速且准确的定位。附图说明[0116] 通过以下参照附图对本发明的示例性实施例的详细描述,本发明的其它特征及其优点将会变得清楚。[0117] 图1是显示可用于实现本公开的实施例的电子设备的硬件配置的例子的框图;[0118] 图2示出了本公开实施例的生产流水线中的异常环节定位方法的流程示意图;[0119] 图3示出了本公开实施例的流转网络的示意图;[0120] 图4示出了本公开另一实施例的流转网络的示意图;[0121] 图5示出了本公开实施例的生产流水线中的异常环节装置的原理框图。具体实施方式[0122] 现在将参照附图来详细描述本发明的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本发明的范围。[0123] 以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。[0124] 对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。[0125] 在这里示出和讨论的所有例子中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它例子可以具有不同的值。[0126] 应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。[0127] 下面,参照附图描述根据本发明实施例的各个实施例和例子。[0128] <硬件配置>[0129] 本公开实施例的方法可以由至少一台电子设备实施,即,用于实施该方法的装置5000可以布置在该至少一台电子设备上。图1示出了任意电子设备的硬件结构。图1所示的电子设备可以是便携式电脑、台式计算机、工作站、服务器等,也可以是任意的具有处理器等计算装置和存储器等存储装置的其他设备,在此不做限定。[0130] 如图1所示,该电子设备1000可以包括处理器1100、存储器1200、接口装置1300、通信装置1400、显示装置1500、输入装置1600、扬声器1700、麦克风1800等等。其中,处理器1100用于执行计算机程序。该计算机程序可以采用比如x86、Arm、RISC、MIPS、SSE等架构的指令集编写。存储器1200例如包括ROM(只读存储器)、RAM(随机存取存储器)、诸如硬盘的非易失性存储器等。接口装置1300例如包括USB接口、耳机接口等。通信装置1400例如能够进行有线或无线通信,具体地可以包括Wifi通信、蓝牙通信、2G/3G/4G/5G通信等。显示装置1500例如是液晶显示屏、触摸显示屏等。输入装置1600例如可以包括触摸屏、键盘、体感输入等。电子设备1000可以通过扬声器1700输出语音信息,及可以通过麦克风1800采集语音信息等。[0131] 图1所示的电子设备仅仅是说明性的并且决不意味着对本发明、其应用或使用的任何限制。应用于本公开的实施例中,电子设备1000的所述存储器1200用于存储指令,所述指令用于控制所述处理器1100进行操作以执行本公开实施例的生产流水线中的异常环节定位方法。技术人员可以根据本发明所公开方案设计指令。指令如何控制处理器进行操作,这是本领域公知,故在此不再详细描述。[0132] 在一个实施例中,提供了一种包括至少一个计算装置和至少一个存储装置的设备,该至少一个存储装置用于存储指令,该指令用于控制该至少一个计算装置执行根据本公开任意实施例的方法。[0133] 该设备可以包括至少一台图1所示的电子设备1000,以提供至少一个例如是处理器的计算装置和至少一个例如是存储器的存储装置,在此不做限定。[0134] <方法实施例>[0135] 在本实施例中,提供一种生产流水线中的异常环节定位方法,该生产流水线中的异常环节定位方法可以是由电子设备实施,该电子设备可以是如图1所示的电子设备1000,电子设备1000可以是服务器,也可以是终端设备。即,本实施例的方法可以是由服务器实施,也可以是由终端设备实施,还可以是由服务器和终端设备共同实施。[0136] 在本实施例的方法有终端设备参与实施的应用中,交互可以包括人机交互。在本实施例的方法有服务器参与实施的应用中,交互可以包括服务器与终端设备之间的交互。[0137] 根据图2所示,本实施例的生产流水线中的异常环节定位方法可以包括如下步骤S2100~S2400:[0138] 步骤S2100,获取产品集合中的各个产品在生产流水线上的生产流转数据以及各产品是否为良品的标签。[0139] 产品集合可以是任意生产方所生产的同一种产品的集合,该同一种产品通常可以具有相同的物料。例如,该产品集合可以是车辆生产方所生产的车辆的集合,又例如,该产品集合可以是任意零件生产方所生产的零部件的集合。[0140] 产品的生产流转数据包括:生产产品的物料的批次信息、物料所经过生产流水线各道工序的设备的标识信息。[0141] 一个产品从物料开始通常会经过多道加工工序,才能得到最终的该产品,参照图3所示,从物料A开始,经过工序B,再经过工序C,最后经过工序D,产出最终的产品,其中,同一种物料A可能对应多个生产批次,例如物料A对应有三个批次{A1,A2,A3},工序B对应四台设备{B1,B2,B3,B4},同样工序C对应两台设备{C1,C2},工序D对应三台设备{D1,D2,D3},当然,图1仅是示例性地,实际生产流水线上可能还会涉及有多种不同的物料以及更多的工序,而且,每道工序对应的设备数量也会有多种,其次,生产中间环节也有可能引入新的物料。[0142] 产品为良品的标签可以理解为是:当产品为良品时,其对应的标签为1,反之,其对应的标签为0,产品为良品可以理解为是,产品为合格的产品,反之,产品为不合格的产品。[0143] 本实施例中,本步骤S2100中获取产品集合中的各个产品在生产流水线上的生产流转数据以及各产品是否为良品的标签可以进一步包括如下步骤S2110~S2120:[0144] 步骤S2110,通过获取接口向产品数据系统发送获取产品集合中的各个产品在生产流水线上的生产流转数据以及各产品是否为良品的标签的请求。[0145] 请求中至少携带产品集合的标识信息和各个产品的标识信息中的任意一种。[0146] 本步骤S2110中,其可以提供人机交互接口,基于用户请求从产品数据系统中获取各个产品的生产流转数据以及各产品是否为良品的标签,进而提高数据获取的靶向性。[0147] 步骤S2120,接收产品数据系统响应于请求返回的各个产品的生产流转数据以及各产品是否为良品的标签。[0148] 在获取产品集合中的各个产品在生产流水线上的生产流转数据以及各产品是否为良品的标签之后,进入:[0149] 步骤S2200,构建生产流水线的流转网络。[0150] 生产流水线的流转网络可以是根据实际的流水线的结构构建出来的网络结构图,该构建出的流转网络可以是图3所示的网络结构图。[0151] 一个产品的生产流转数据对应流程网络中的一条流转路径,如图3所示的流转网络,其中,实线1为一条流转路径,其可以对应一个产品的生产流转数据,即物料A1‑工序B中的设备B1‑工序C中的设备C1‑工序D中的设备D2。实线2为一条流转路径,其也可以对应一个产品的生产流转数据,即物料A2‑工序B中的设备B4‑工序C中的设备C2‑工序D中的设备D1。[0152] 本实施例中,本步骤S2200中构建生产流水线的流转网络可以进一步包括如下步骤S2210~S2220:[0153] 步骤S2210,根据生产产品的物料的批次信息以及生产流水线的各道工序的设备的标志信息,获得生产产品的物料及各道工序间的流转关系和流转方向。[0154] 本步骤S2210中,其是将物料和设备抽象为节点,节点与节点间的流转关系抽象为边,如图3中箭头所示,在生产过程中,每一道工序生产的中间品,会随机的分发到后一道工序的多个节点,每一条虚线表示一组流转关系。[0155] 步骤S2220,以产品集合所涉及的所有物料的批次信息以及生产流水线的各道工序的设备的标志信息为节点,以节点与节点间的流转关系为边,以流转方向为边的方向,构建流转网络。[0156] 在构建生产流水线的流转网络之后,进入:[0157] 步骤S2300,根据各产品是否为良品的标签,统计流转网络中的各流转路径对应的良品率。[0158] 良品率为是指产线上最终通过测试的良品数量占投入材料理论生产出的数量的比例。[0159] 本实施例中,本步骤S2300中根据各产品是否为良品的标签,统计流转网络中的各流转路径对应的良品率可以进一步包括如下步骤S2310~S2330:[0160] 步骤S2310,获取流转网络中的每条流转路径上的产品的第一总数量。[0161] 示例性地,如图3所示的流转网络,可以是分别计算流转路径1上的产品的总数量,以及,流转路径2上的产品的总数量等,为将任意一条流转路径上的产品的总数量和该条流转路径上的良品的总数量进行区分,这里,将流转路径上的产品的总数量称之为第一总数量,将以下该条流转路径上的良品的总数量称之为第二总数量。[0162] 步骤S2320,获取每条流转路径上的标签为良品的产品的第二总数量。[0163] 继续上述步骤S2320的示例,可以是分别计算流转路径1上的良品的总数量,以及,流转路径2上的良品的总数量等。[0164] 步骤S2330,根据每条流转路径对应的第一总数量和第二总数量,获得每条流转路径上的良品率。[0165] 本步骤S2330中,根据流转网络中每条流转路径对应的产品的第一总数量和该条流转路径上的良品的第二总数量,便可获得该条流转路径上的良品率。[0166] 继续上述步骤S2330的示例,流转网络中任意一条流转路径上的良品率Pi的计算公式如下:[0167][0168] 其中,i表示流转网络中的流转路径,i的取值为1至n的任意整数,n为流转网络中的流转路径的总数量,Mi表示第i条流转路径上的产品的第一总数量,Ni表示第i条流转路径上的标签为良品的产品的第二总数量。例如,流转路径1的良品率 又例如,流转路径2上的良品率 等。[0169] 在根据各产品是否为良品的标签,统计流转网络中的各流转路径对应的良品率之后,进入:[0170] 步骤S2400,根据流转网络中的各流转路径和各流转路径对应的良品率,对生产流水线中的异常环节进行定位。[0171] 本实施例中,由于生产流水线复杂,该生产流水线中的任意环节存在异常,均有可能导致最终产品的良品率。[0172] 本实施例中,在获得流转网络中的各流转路径和各流转路径对应的良品率之后,便可对生产流水线中的异常环节进行快速定位。[0173] 本实施例中,由于每条流转路径上包括生产产品的物料的批次信息节点、及物料所经过生产流水线各道工序的设备的标识信息节点,在此,本步骤S2400中根据流转网络中的各流转路径和各流转路径对应的良品率,对生产流水线中的异常环节进行定位可以进一步包括如下步骤S2410~S2430:[0174] 步骤S2410,以流转网络中的每条流转路径上的各个节点的合格率为未知参数,以流转路径对应的良品率为已知参数,构建概率模型方程组。[0175] 示例性地,如图3所示的流转网络,流转路径1上的物料A1的合格率可以标记为PA1,工序B中的设备B1的合格率可以标记为PB1,工序C中的设备C1的合格率标记为PC1,以及,工序D中的设备D2的合格率可以标记为PD2,并且,流转路径1对应的良品率为根据以上步骤S2300所计算出的P1。流转路径2上的物料A2的合格率可以标记为PA2,工序B中的设备B4的合格率可以标记为PB4,工序C中的设备C2的合格率标记为PC2,以及,工序D中的设备D1的合格率可以标记为PD1,并且,流转路径2对应的良品率为根据以上步骤S2300所计算出的P2。当然,还可以是标记流转路径i所经过的各个节点的合格率,以及,根据以上步骤S2300所计算出的流转路径i上的良品率Pi,在此,根据本步骤S2410所构建的概率模型方程组可以为:[0176][0177] 其中,以上PA1*PB1*PC1*PD2=P1表示以流转路径1上的各个节点的合格率PA1、PA1、PC1、PC1为未知参数,以该流转路径1对应的良品率P1为已知参数,所构建的概率模型方程,也可以理解为是,该流转路径1对应的良品率近似等于该流转路径1经过的各个节点的合格率的乘积。以上PA2*PB4*PC2*PD1=P2表示以流转路径2上的各个节点的合格率PA2、PB4、PC2、PD1为未知参数,以该流转路径2对应的良品率P2为已知参数所构建的概率模型方程,也可以理解为是,该流转路径2对应的良品率近似等于该流转路径2经过的各个节点的合格率的乘积,其中,对于流转网络中的每一条流转路径,均能构建出该条流转路径的概率模型方程,进而获得公式(3)的概率模型方程组。[0178] 步骤S2420,求解概率模型方程组,获得流转网络中各个节点的合格率。[0179] 继续上述步骤S2410的示例,在构建出(3)所示的概率模型方程组后,便可求解出概率模型方程组中的未知参数,以获得流转网络中各个节点的合格率。[0180] 本实施例中,本步骤S2420中求解概率方程组,获得流转网络中各个节点的合格率可以进一步包括如下步骤S2421~S2422:[0181] 步骤S2421,获取目标优化算法。[0182] 该目标优化算法可以包括二次规划求解算法、粒子群算法和遗传算法中的至少一种算法。[0183] 步骤S2422,根据目标优化算法和设定的约束条件,求解概率方程组,获得流转网络中各个节点的合格率。[0184] 设定的约束条件包括关于流转网络中各个节点的合格率的约束。该关于流转网络中每个节点的合格率的约束为:每个节点的合格率的取值为0到1之间的自然数。[0185] 接下来示出一个例子的求解概率模型方程组的过程,首先,将(3)中的概率模型方程组转换为线性方程组:[0186][0187] 然后,将(4)中的线性方程组转换为矩阵形式:[0188][0189] 在此,以上(4)中的矩阵方程可以简写为A*LX=L形式,其中A矩阵每一行表示一条流转路径,每一列表示一个节点,流转路径经过的节点取1,没经过的节点取0,LX向量表示每个节点的合格率的对数值,为需要求解的未知参数,等号右边L为每条流转路径观测到的良品率的对数值。[0190] 其中,LX有约束条件,每个元素取值都在0到1之间,对应的对数取值LX则小于等于0。本公开通过带约束条件的目标优化算法,求解上述线性方程组,可以得到每个节点的合格率,求解过程可以为:针对矩阵方程(5),A*LX=L,需要找到一组最优的L'X使得A*L'X和等式右边L的偏差最小,该偏差例如但不限于包括均分误差(MSE)和平均绝对误差(MAE)等,则最终求解的问题为:[0191][0192] 其中,上述公式(6)中n表示流转路径的数量,f表示误差函数,wi表示每一条流转路径的权重。[0193] 步骤S2430,根据流转网络中各个节点的合格率,对所产流水线中的异常环节进行定位。[0194] 本实施例中,本步骤S2430中根据流转网络中各个节点的合格率,对所述生产流水线中的异常环节进行定位可以进一步包括:[0195] 步骤S2431,根据流转网络中各个节点的合格率,获得各个节点的异常率。[0196] 步骤S2432,根据各个节点的异常率,对生产流水线中的异常环节进行定位。[0197] 在一个例子中,本步骤S2432中根据各个节点的异常率,对生产流水线中的异常环节进行定位可以进一步包括:针对于每一节点,获取预先设定的异常率;将每一节点的异常率和对应的设定的异常率进行比较;在节点的异常率大于设定的异常率的情况下,确定节点为异常节点。[0198] 在一个例子中,本步骤S2432中根据各个节点的异常率,对生产流水线中的异常环节进行定位可以进一步包括:将各个节点的异常率按照从大到小的顺序进行排序;获取前预定数量的异常率对应的节点,作为异常节点。[0199] 根据本公开实施例的方法,其能够将一个产品的生产流转数据与所构建的生产流水线的流转网络的一条流转路径对应,同时,根据各产品是否为良品的标签,来统计出流转网络中的各流转路径对应的良品率,进而根据流转网络中的各流转路径和各流转路径对应的良品率,对生产流水线中的异常环节进行定位,即,本公开实施例利用产品生产过程中在各道工序间的生产流转数据,对生产过程中的异常环节进行了快速且准确的定位。[0200] 在一个实施例中,根据以上公式(6)可知,概率模型方程组中还可以包括对应第i条流转路径的权重wi,在此,由于真实的生产过程中,生产流程比较复杂,可能存在大量的流转路径,但是有的流转路径上所对应的产品数量非常少,导致统计到的该条流转路径对应的良品率的置信度不高,在此,本公开实施例的生产流水线中的异常环节定位方法还可以包括如下步骤S3100~S3300:[0201] 步骤S3100,获取流转网络中的每条流转路径上的产品的第一总数量。[0202] 步骤S3200,根据第一总数量,调整概率模型方程组中对应流转路径的权重。[0203] 第一总数量可以和权重成正比。[0204] 例如可以是流转路径上的产品的总数量越大,将概率模型方程组中对应该流转路径的权重调的越高。[0205] 又例如可以是流转路径上的产品的总数量越少,将概率模型方程组中对应该流转路径的权重调的越小。[0206] 步骤S3300,基于调整后的权重,根据目标优化算法和设定的约束条件,求解概率模型方程组,获得流转网络中各个节点的合格率。[0207] 根据本公开实施例的方法,其可以在流转路径上的产品的数量特别小的情况下,将概率模型方程组中该条流转路径的权重调的越小,进而使其对整个异常环节定位时所产生的影响越小。[0208] 在一个实施例中,实际应用过程中,可能存在某一条流转路径上所有的产品均是不合格的,即,该条流转路径上的所有产品是否为良品的标签均为0,导致该条流转路径对应的良品率为0,在此,本公开实施例的生产流水线中的异常环节定位方法还可以包括如下步骤S4100~S4200:[0209] 步骤S4100,在流转网络中的任一流转路径对应的良品率低于设定的良品率阈值的情况下,将任一流转路径上的良品率进行调整。[0210] 设定的良品率阈值可以是根据实际应用场景和实际应用需求设置的数值,该良品率阈值可以为0。[0211] 例如,可以是在某一条流转路径对应的良品率为0的情况下,将该条流转路径上的良品率调整为一个比较小的值。[0212] 步骤S4200,根据流转网络中的各流转路径和调整后的各流转路径对应的良品率,对生产流水线中的异常环节进行定位。[0213] 根据本公开实施例的方法,其在任意一条流转路径对应的良品率为0的情况下,支持对该条流转路径对应的良品率进行置换,使得针对该生产流水线中的异常环节定位更加准确。[0214] 在一个实施例中,对于生产过程中不会导致产品不良的工序,支持直接从流转网络中进行删除,在此,本公开实施例的生产流水线中的异常环节定位方法还可以包括如下步骤S5100~S5200:[0215] 步骤S5100,在流转网络中的任一节点满足设定的滤除条件的情况下,从流转网络中删除任一节点以调整流转网络中的流转路径。[0216] 步骤S5200,基于调整后的流转网络中的各流转路径和各流转路径对应的良品率,对生产流水线中的异常环节进行定位。[0217] 在一个实施例中,对于一道工序涉及的设备数量较多时,还支持多台设备合并为一个节点,在此,本公开实施例的生产流水线中的异常环节定位方法还可以包括如下步骤S6100~S6200:[0218] 步骤S6100,在任一工序的设备数量超过设定的设备数量阈值的情况下,将任一工序的多个设备进行合并处理。[0219] 设定的设备数量阈值可以是根据实际应用场景和实际应用需求设置的数值。[0220] 例如可以将该多个设备合并为一个节点。[0221] 步骤S6200,以产品集合所涉及的所有物料的批次信息、及生产流水线的各道工序的进行合并处理后的设备的标志信息为节点,以节点与节点间的流转关系为边,以流转方向为边的方向,重新构建流转网络。[0222] 在一个实施例中,本公开实施例的生产流水线中的异常环节定位方法还可以包括:响应于获取挖掘流转网络的挖掘结果的请求,获取设定的显示模式;按照显示模式显示构建的流转网络。[0223] 该显示模式可以是图形形式。[0224] 该实施例中,其可以根据获取挖掘流转网络的挖掘结果的请求,按照设定的显示模式提供流转网络,以使得显示输出具有更友好的可视性。[0225] 在一个实施例中,本公开实施例的生产流水线中的异常环节定位方法还可以包括:切分流转网络,获得多个子流转网络,以根据多个子流转网络中的各流转路径对应的良品率,对生产流水线中的异常环节进行定位。[0226] 本实施例中,对于复杂的流转网络,其支持对工序按照流转路径顺序进行拆分,进而形成多个子流转网络,然后从最后的一个子流转网络开始求解,并对前面的字流转网络递归求解。[0227] 示例性地,如图4所示,由于整个生产工序流程比较长,在此,仅关注工序C和工序D,在工序C之前可能还有很多道工序,工序D之后也可能还有很多工序。要对工序C和工序D所组成的这个子流转网络求解,则先在该子流转网络的上游,引入虚拟节点B',表示B(包括B)之前的所有工序后的中间产出物,B工序的每个节点Bi都对应一个虚拟节点Bi',每个虚拟节点有一个隐含的合格率 ,该合格率是前面所有工序总的影响。可以看作该子流转网络的物料输入。同样在该子流转网络的下游也引入虚拟节点,对E的每个节点Ei引入虚拟节点Ei',同样每个虚拟节点Ei'有一个银行的合格率 ,表示后面所有工序的总的影响。在引入好虚拟节点后,可以构建模型方程组,比如图4中实线1表示的流转路径1,则可以统计经过节点B1,C1,D1,E1,同时统计流转路径1上的良品率P1,P1=P'B1*PC1*PD1*P'E1。同理可以统计图4中实线2表示的流转路径2经过节点B2,C3,D3,E2的观测到的产品合格率P2=P'B2*PC3*PD3*P'E2,进而得到以下模型方程组:[0228][0229] 得到方程组之后,可以跟全网络求解的求解进行求解,求解得到的结果中虚拟节点的合格率,不代表对应节点的合格率,是前面或者后面所有工序的总影响。[0230] <装置实施例>[0231] 在本实施例中,提供一种生产流水线中的异常环节定位装置5000,如图5所示,包括获取模块5100、构建模块5200、统计模块5300及定位模块5400。[0232] 获取模块5100,用于获取产品集合中的各个产品在生产流水线上的生产流转数据以及各产品是否为良品的标签。[0233] 构建模块5200,用于构建所述生产流水线的流转网络,其中,一个产品的生产流转数据对应所述流程网络中的一条流转路径。[0234] 统计模块5300,用于根据各产品是否为良品的标签,统计所述流转网络中的各流转路径对应的良品率。[0235] 定位模块5400,用于根据所述流转网络中的各流转路径和各流转路径对应的良品率,对所述生产流水线中的异常环节进行定位。[0236] 在一个实施例中,所述传染病诊疗数据中的每条传染病诊疗数据包括病患身份证标识,以及包括患病时间和确诊时间之中的任意一个或两个。[0237] 在一个实施例中,所述生产流转数据包括:生产产品的物料的批次信息、物料所经过生产流水线各道工序的设备的标识信息。[0238] 在一个实施例中,所述构建模块5200,具体用于:[0239] 根据生产产品的物料的批次信息以及所述生产流水线的各道工序的设备的标志信息,获得生产产品的物料及各道工序间的流转关系和流转方向;以所述产品集合所涉及的所有物料的批次信息以及所述生产流水线的各道工序的设备的标志信息为节点,以节点与节点间的流转关系为边,以流转方向为边的方向,构建流转网络。[0240] 在一个实施例中,所述统计模块5300,具体用于:获取所述流转网络中的每条流转路径上的产品的第一总数量;获取每条所述流转路径上的标签为良品的产品的第二总数量;根据每条所述流转路径对应的所述第一总数量和所述第二总数量,获得每条所述流转路径上的良品率。[0241] 在一个实施例中,每条所述流转路径上包括生产产品的物料的批次信息节点、及物料所经过生产流水线各道工序的设备的标识信息节点,所述定位模块5400,具体用于:以所述流转网络中的每条流转路径上的各个节点的合格率为未知参数,以所述流转路径对应的良品率为已知参数,构建概率模型方程组;求解所述概率模型方程组,获得所述流转网络中各个节点的合格率;根据所述流转网络中各个节点的合格率,对所述生产流水线中的异常环节进行定位。[0242] 在一个实施例中,所述定位模块5400,具体用于:获取目标优化算法,其中,所述目标优化算法至少包括二次规划求解算法、粒子群算法和遗传算法中的至少一种算法;根据所述目标优化算法和设定的约束条件,求解所述概率模型方程组,获得所所述流转网络中各个节点的合格率;其中,所述设定的约束条件包括关于所述流转网络中各个节点的合格率的约束。[0243] 在一个实施例中,关于所述流转网络中各个节点的合格率的约束为:各个所述节点的合格率的取值为0到1之间的自然数。[0244] 在一个实施例中,所述定位模块5400,具体用于:根据所述流转网络中各个节点的合格率,获得各个所述节点的异常率;根据各个所述节点的异常率,对所述生产流水线中的异常环节进行定位。[0245] 在一个实施例中,所述定位模块5400,具体用于:针对于每一所述节点,获取预先设定的异常率;将每一所述节点的异常率和对应的所述设定的异常率进行比较;在所述节点的异常率大于设定的异常率的情况下,确定所述节点为异常节点。[0246] 在一个实施例中,所述定位模块5400,具体用于:将各个所述节点的异常率按照从大到小的顺序进行排序;获取前预定数量的异常率对应的节点,作为异常节点。[0247] 在一个实施例中,所述概率模型方程组中还包括对应每条流转路径的权重;所述定位模块5400,还用于:获取所述流转网络中的每条流转路径上的产品的第一总数量;根据所述第一总数量,调整所述概率模型方程组中对应所述流转路径的权重;基于调整后的权重,根据所述目标优化算法和设定的约束条件,求解所述概率模型方程组,获得所述流转网络中各个节点的合格率。[0248] 在一个实施例中,所述定位模块5400,还用于:在所述流转网络中的任一流转路径对应的良品率低于设定的良品率阈值的情况下,将所述任一流转路径上的良品率进行调整;根据所述流转网络中的各流转路径和调整后的各流转路径对应的良品率,对所述生产流水线中的异常环节进行定位。[0249] 在一个实施例中,所述定位模块5400,还用于:在所述流转网络中的任一节点满足设定的滤除条件的情况下,从所述流转网络中删除所述任一节点以调整所述流转网络中的流转路径;基于所述调整后的流转网络中的各流转路径和各流转对应的良品率,对所述生产流水线中的异常环节进行定位[0250] 在一个实施例中,所述构建模块5200,还用于:在任一工序的设备数量超过设定的设备数量阈值的情况下,将所述任一工序的多个设备进行合并处理;以所述产品集合所涉及的所有物料的批次信息、及所述生产流水线的各道工序的进行所述合并处理后的设备的标志信息为节点,以节点与节点间的流转关系为边,以流转方向为边的方向,重新构建流转网络。[0251] 在一个实施例中,所述定位模块5400,还用于:切分所述流转网络,获得多个子流转网络,以根据所述多个子流转网络中的各流转路径对应的良品率,对所述生产流水线中的异常环节进行定位。[0252] 在一个实施例中,装置5000还包括显示模块(图中未示出)。[0253] 该显示模块,用于响应于获取挖掘流转网络的挖掘结果的请求,获取设定的显示模式;按照所述显示模式显示构建的所述流转网络。[0254] 在一个实施例中,所述获取模块,具体用于:通过获取接口向产品数据系统发送获取产品集合中的各个产品在生产流水线上的生产流转数据以及各产品是否为良品的标签的请求;其中,所述请求中至少携带所述产品集合的标识信息和各个产品的标识信息中的任意一种;接收所述产品数据系统响应于所述请求返回的各个产品的生产流转数据以及各产品是否为良品的标签。[0255] <存储介质实施例>[0256] 本实施例提供了一种计算机可读存储介质,其中,其上存储有计算机程序,所述计算机程序在被处理器执行时实现根据上述方法实施例中任一项所述的方法。[0257] 本发明可以是设备、方法和/或计算机程序产品。计算机程序产品可以包括计算机可读存储介质,其上载有用于使处理器实现本发明的各个方面的计算机可读程序指令。[0258] 计算机可读存储介质可以是可以保持和存储由指令执行设备使用的指令的有形设备。计算机可读存储介质例如可以是――但不限于――电存储设备、磁存储设备、光存储设备、电磁存储设备、半导体存储设备或者上述的任意合适的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:便携式计算机盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、静态随机存取存储器(SRAM)、便携式压缩盘只读存储器(CD‑ROM)、数字多功能盘(DVD)、记忆棒、软盘、机械编码设备、例如其上存储有指令的打孔卡或凹槽内凸起结构、以及上述的任意合适的组合。这里所使用的计算机可读存储介质不被解释为瞬时信号本身,诸如无线电波或者其他自由传播的电磁波、通过波导或其他传输媒介传播的电磁波(例如,通过光纤电缆的光脉冲)、或者通过电线传输的电信号。[0259] 这里所描述的计算机可读程序指令可以从计算机可读存储介质下载到各个计算/处理设备,或者通过网络、例如因特网、局域网、广域网和/或无线网下载到外部计算机或外部存储设备。网络可以包括铜传输电缆、光纤传输、无线传输、路由器、防火墙、交换机、网关计算机和/或边缘服务器。每个计算/处理设备中的网络适配卡或者网络接口从网络接收计算机可读程序指令,并转发该计算机可读程序指令,以供存储在各个计算/处理设备中的计算机可读存储介质中。[0260] 用于执行本发明操作的计算机程序指令可以是汇编指令、指令集架构(ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码,所述编程语言包括面向对象的编程语言—诸如Smalltalk、C++等,以及常规的过程式编程语言—诸如“C”语言或类似的编程语言。计算机可读程序指令可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络—包括局域网(LAN)或广域网(WAN)—连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。在一些实施例中,通过利用计算机可读程序指令的状态信息来个性化定制电子电路,例如可编程逻辑电路、现场可编程门阵列(FPGA)或可编程逻辑阵列(PLA),该电子电路可以执行计算机可读程序指令,从而实现本发明的各个方面。[0261] 这里参照根据本发明实施例的方法、装置(系统)和计算机程序产品的流程图和/或框图描述了本发明的各个方面。应当理解,流程图和/或框图的每个方框以及流程图和/或框图中各方框的组合,都可以由计算机可读程序指令实现。[0262] 这些计算机可读程序指令可以提供给通用计算机、专用计算机或其它可编程数据处理装置的处理器,从而生产出一种机器,使得这些指令在通过计算机或其它可编程数据处理装置的处理器执行时,产生了实现流程图和/或框图中的一个或多个方框中规定的功能/动作的装置。也可以把这些计算机可读程序指令存储在计算机可读存储介质中,这些指令使得计算机、可编程数据处理装置和/或其他设备以特定方式工作,从而,存储有指令的计算机可读介质则包括一个制造品,其包括实现流程图和/或框图中的一个或多个方框中规定的功能/动作的各个方面的指令。[0263] 也可以把计算机可读程序指令加载到计算机、其它可编程数据处理装置、或其它设备上,使得在计算机、其它可编程数据处理装置或其它设备上执行一系列操作步骤,以产生计算机实现的过程,从而使得在计算机、其它可编程数据处理装置、或其它设备上执行的指令实现流程图和/或框图中的一个或多个方框中规定的功能/动作。[0264] 附图中的流程图和框图显示了根据本发明的多个实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或指令的一部分,所述模块、程序段或指令的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。对于本领域技术人员来说公知的是,通过硬件方式实现、通过软件方式实现以及通过软件和硬件结合的方式实现都是等价的。[0265] 以上已经描述了本发明的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。本文中所用术语的选择,旨在最好地解释各实施例的原理、实际应用或对市场中的技术改进,或者使本技术领域的其它普通技术人员能理解本文披露的各实施例。本发明的范围由所附权利要求来限定。

专利地区:北京

专利申请日期:2020-12-15

专利公开日期:2024-09-03

专利公告号:CN112559594B


以上信息来自国家知识产权局,如信息有误请联系我方更正!
该专利所有权非本平台所有,我方无法提供专利权所有者联系方式,请勿联系我方。
电话咨询
到底部
搜本页
回顶部